Description
Summary:The Intergovernmental Panel on Climate Change (IPCC, 2014) predicts that marine ecosystems will face many environmental pressures by 2100, in particular ocean acidification and warming. In coastal areas, microbial mats play key roles in the transformation of organic matter and the dynamics of biogeochemical cycles. The impacts of climate change on marine ecosystems have been widely studied at the global level but very little at the local level. They are particularly poorly understood in the Nouvelle-Aquitaine region (France). It is essential to understand the structural and functional modifications and dynamics of microbial communities in response to climate change. This thesis aims to define the impact of ocean warming and acidification on the microbial mats of Ré Island. First, a study of this microbial structure was perfomed in situ, in several types of salt marshes and according to the seasons, allowing to select the most suitable area to collect microbial mat and the season of sampling. The selected microbial mats were then maintained in mesocosms at laboratory. An increase in water temperature and a decrease in water pH were simulated for 8 weeks according to the most pessimistic predictions (RCP8.5) of the IPCC (2014) for 2100. Daily monitoring of physical-chemical parameters and weekly sampling of the microbial mat were performed to follow the functional dynamics and characterise the diversity changes. Acidification impacted the diversity and functioning of the microbial mats, particularly on the phototrophic communities. It has contributed to a decrease in prokaryotic diversity and an increase in some archaea that parasitise other archaea. The warming of the water had rather an effect on eukaryotic communities, with a change in Chlorophyceae and Diatomea abundance. The combination of these two conditions had less impact than the conditions alone suggesting a mitigating effect between them. However, in their current natural environment, these microbial mats already face temperatures higher or equal to ...