Isotopic constrains on the interpretation of the nitrate record in the Vostok ice core
Nitrate ions (NO3-) found in Antarctic snows stem from the degradation of nitrogen oxydes (NOx = NO + NO2) in the atmosphere. At sites with low snow accumulation rates such as Vostok or Dome C (East Antarctic plateau), nitrate deposition to the snow is not irreversible and this strongly hampers the...
Main Author: | |
---|---|
Other Authors: | , , , , , , |
Format: | Doctoral or Postdoctoral Thesis |
Language: | French |
Published: |
HAL CCSD
2011
|
Subjects: | |
Online Access: | https://theses.hal.science/tel-00700896 https://theses.hal.science/tel-00700896/document https://theses.hal.science/tel-00700896/file/Erbland_these_2011_final.pdf |
Summary: | Nitrate ions (NO3-) found in Antarctic snows stem from the degradation of nitrogen oxydes (NOx = NO + NO2) in the atmosphere. At sites with low snow accumulation rates such as Vostok or Dome C (East Antarctic plateau), nitrate deposition to the snow is not irreversible and this strongly hampers the interpretation of nitrate concentration records in ice cores. Nitrogen stable isotopic (δ15N) as high as +339‰ were measured in nitrate in the upper firn at Dome C and have been attributed to nitrate photolysis initiating a strong recycling at the snow surface. The oxygen isotopic anomaly (Δ17O) reflects the activity of ozone (O3) in nitrate formation. We present the first comprehensive isotopic analysis of nitrate (δ15N, Δ17O and δ18O) in a deep ice core. 64 samples of nitrate from the Vostok ice core have been analyzed and cover the last 150 000 years. This dataset has been completed with 313 samples recently collected in the atmosphere/surface hoar/snow continuum at Dome C as well as in several snowpits from various sites covering most of the East Antarctica. Those present-day samples are used to evaluate a conceptual model (named TRANSITS) developped during this PhD and which aims at representing nitrate recycling at the snow/atmosphere interface and at modelling its impact on the isotopic composition of the archived nitrate. High positive δ15N values measured in the Vostok ice core reveal that nitrate recycling has always occurred at the surface of the Antarctic plateau over this period. Past variations of the primary flux of nitrate to the Vostok site have been estimated using the TRANSITS model. They show that glacials are characterized by higher inputs which may be linked to a greater stratospheric denitrification. The Δ17O values indicate that intrusions of stratospheric air masses to the troposphere may have been more frequent in glacials thus incorporating significant amounts of stratospheric ozone to the lower atmosphere. Last, we suggest that this study may have some relevance to the coastal nitrogen ... |
---|