Space/time coupling in brittle deformation at geophysical scales

International audience Strong intermittency as well as spatial heterogeneity characterize the brittle deformation of geophysical objects such as the Earth's crust or the Arctic sea-ice cover. They can be expressed through specific scaling laws, that relate, for a space-time domain, (a) the numb...

Full description

Bibliographic Details
Published in:Earth and Planetary Science Letters
Main Authors: Marsan, David, Weiss, Jérôme
Other Authors: Université Savoie Mont Blanc (USMB Université de Savoie Université de Chambéry ), EDGe, Laboratoire de glaciologie et géophysique de l'environnement (LGGE), Observatoire des Sciences de l'Univers de Grenoble (OSUG), Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national des sciences de l'Univers (INSU - CNRS)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Savoie Mont Blanc (USMB Université de Savoie Université de Chambéry )-Centre National de la Recherche Scientifique (CNRS)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national des sciences de l'Univers (INSU - CNRS)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Savoie Mont Blanc (USMB Université de Savoie Université de Chambéry )-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS)-Observatoire des Sciences de l'Univers de Grenoble (OSUG), Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national des sciences de l'Univers (INSU - CNRS)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Savoie Mont Blanc (USMB Université de Savoie Université de Chambéry )-Centre National de la Recherche Scientifique (CNRS)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national des sciences de l'Univers (INSU - CNRS)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Savoie Mont Blanc (USMB Université de Savoie Université de Chambéry )-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS)
Format: Article in Journal/Newspaper
Language:English
Published: HAL CCSD 2010
Subjects:
Online Access:https://hal-insu.archives-ouvertes.fr/insu-00565313
https://doi.org/10.1016/J.EPSL.2010.05.019
Description
Summary:International audience Strong intermittency as well as spatial heterogeneity characterize the brittle deformation of geophysical objects such as the Earth's crust or the Arctic sea-ice cover. They can be expressed through specific scaling laws, that relate, for a space-time domain, (a) the number of earthquakes or (b) the strain rate, vs. the size of the domain, for the Earth's crust or the Arctic sea ice, respectively. However, in both cases, spatial (respectively temporal) scaling depends on the time (respectively spatial) scale considered, i.e., the space and time scaling dependences are coupled. Here, we show that this space-time coupling of brittle deformation at geophysical scales can be summarized through a unique scaling law characterizing the discrete fracturing events (earthquakes or displacement events along sea-ice leads). As suggested by an analysis of southern Californian seismicity, we argue that this space-time coupling is likely to emerge from the complex correlation patterns related to chain triggering of earth- or ice-quakes.