Temperature affects the early life history stages of corals more than near future ocean acidification

International audience Climate change is projected to increase ocean temperatures by at least 2 C, and levels of pH by similar to 0.2 units (ocean acidification, OA) by the end of this century. While the effects of these stressors on marine organisms have been relatively well explored in isolation,...

Full description

Bibliographic Details
Published in:Marine Ecology Progress Series
Main Authors: Chua, Chia Miin, Leggat, William, Moya, Aurelie, Baird, Andrew H.
Other Authors: Centre Scientifique de Monaco (CSM), Centre Scientifique de Monaco, Laboratoire d'océanographie de Villefranche (LOV), Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Institut de la Mer de Villefranche (IMEV), Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), ARC Centre of Excellence for Coral Reef Studies (CoralCoE), James Cook University (JCU)
Format: Article in Journal/Newspaper
Language:English
Published: HAL CCSD 2013
Subjects:
Online Access:https://hal.archives-ouvertes.fr/hal-03502651
https://hal.archives-ouvertes.fr/hal-03502651/document
https://hal.archives-ouvertes.fr/hal-03502651/file/24976-chua-et-al-2012.pdf
https://doi.org/10.3354/meps10077
Description
Summary:International audience Climate change is projected to increase ocean temperatures by at least 2 C, and levels of pH by similar to 0.2 units (ocean acidification, OA) by the end of this century. While the effects of these stressors on marine organisms have been relatively well explored in isolation, possible interactions between temperature and OA have yet to be thoroughly investigated. OA at levels projected to occur within this century has few direct ecological effects on the early life history stages of corals. In contrast, temperature has pronounced effects on many stages in the early life history of corals. Here, we test whether temperature might act in combination with OA to produce a measurable ecological effect on fertilization, development, larval survivorship or metamorphosis of 2 broadcast spawning species, Acropora millepora and A. tenuis, from the Great Barrier Reef. We used 4 treatments: control, high temperature (+2 degrees C), high partial pressure of CO2 (pCO(2)) (700 mu atm) and a combination of high temperature and high pCO(2), corresponding to the current levels of these variables and the projected values for the end of this century under the IPCC A2 scenario. We found no consistent effect of elevated pCO(2) on fertilization, development, survivorship or metamorphosis, neither alone nor in combination with temperature. In contrast, a 2 degrees C rise in temperature increased rates of development, but otherwise had no consistent effect on fertilization, survivorship or metamorphosis. We conclude that OA is unlikely to be a direct threat to the early life history stages of corals, at least in the near future. In contrast, rising sea temperatures are likely to affect coral population dynamics by increasing the rate of larval development with resulting changes in patterns of connectivity.