Eemian Greenland SMB strongly sensitive to model choice

International audience Understanding the behavior of the Greenland ice sheet in a warmer climate, and particularly its surface mass balance (SMB), is important for assessing Greenland's potential contribution to future sea level rise. The Eemian in-terglacial period, the most recent warmer-than...

Full description

Bibliographic Details
Published in:Climate of the Past
Main Authors: Plach, Andreas, Nisancioglu, Kerim, Le Clec'H, Sébastien, Born, Andreas, Langebroek, Petra, Guo, Chuncheng, Imhof, Michael, Stocker, Thomas
Other Authors: Bjerknes Centre for Climate Research (BCCR), Department of Biological Sciences Bergen (BIO / UiB), University of Bergen (UiB)-University of Bergen (UiB), University of Oslo (UiO), Laboratoire des Sciences du Climat et de l'Environnement Gif-sur-Yvette (LSCE), Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Vrije Universiteit Brussel (VUB), Universität Zürich Zürich = University of Zurich (UZH), University of Bern
Format: Article in Journal/Newspaper
Language:English
Published: HAL CCSD 2018
Subjects:
Online Access:https://hal.archives-ouvertes.fr/hal-02975965
https://hal.archives-ouvertes.fr/hal-02975965/document
https://hal.archives-ouvertes.fr/hal-02975965/file/cp-14-1463-2018.pdf
https://doi.org/10.5194/cp-14-1463-2018
Description
Summary:International audience Understanding the behavior of the Greenland ice sheet in a warmer climate, and particularly its surface mass balance (SMB), is important for assessing Greenland's potential contribution to future sea level rise. The Eemian in-terglacial period, the most recent warmer-than-present period in Earth's history approximately 125 000 years ago, provides an analogue for a warm summer climate over Green-land. The Eemian is characterized by a positive Northern Hemisphere summer insolation anomaly, which complicates Eemian SMB calculations based on positive degree day estimates. In this study, we use Eemian global and regional climate simulations in combination with three types of SMB models-a simple positive degree day, an intermediate complexity , and a full surface energy balance model-to evaluate the importance of regional climate and model complexity for estimates of Greenland's SMB. We find that all SMB models perform well under the relatively cool pre-industrial and late Eemian. For the relatively warm early Eemian, the differences between SMB models are large, which is associated with whether insolation is included in the respective models. For all simulated time slices, there is a systematic difference between globally and regionally forced SMB models , due to the different representation of the regional climate over Greenland. We conclude that both the resolution of the simulated climate as well as the method used to estimate the SMB are important for an accurate simulation of Greenland's SMB. Whether model resolution or the SMB method is most important depends on the climate state and in particular the prevailing insolation pattern. We suggest that future Eemian climate model intercomparison studies should include SMB estimates and a scheme to capture SMB uncertainties.