A "seabird-eye" on mercury stable isotopes and cycling in the Southern Ocean

International audience Since mercury (Hg) biogeochemistry in the Southern Ocean is minimally documented, we investigated Hg stable isotopes in the blood of seabirds breeding at different latitudes in the Antarctic, subantarctic and subtropical zones. Hg isotopic composition was determined in adult p...

Full description

Bibliographic Details
Published in:Science of The Total Environment
Main Authors: Renedo, Marina, Bustamante, Paco, Cherel, Yves, Pedrero, Zoyne, Tessier, Emmanuel, Amouroux, David
Other Authors: LIttoral ENvironnement et Sociétés (LIENSs), La Rochelle Université (ULR)-Centre National de la Recherche Scientifique (CNRS), Institut des sciences analytiques et de physico-chimie pour l'environnement et les materiaux (IPREM), Université de Pau et des Pays de l'Adour (UPPA)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Institut Universitaire de France (IUF), Ministère de l'Education nationale, de l’Enseignement supérieur et de la Recherche (M.E.N.E.S.R.), Centre d'Études Biologiques de Chizé - UMR 7372 (CEBC), La Rochelle Université (ULR)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)
Format: Article in Journal/Newspaper
Language:English
Published: HAL CCSD 2020
Subjects:
Online Access:https://hal.science/hal-02887265
https://hal.science/hal-02887265/document
https://hal.science/hal-02887265/file/Renedo%20et%20al%202020%20STOTEN.pdf
https://doi.org/10.1016/j.scitotenv.2020.140499
Description
Summary:International audience Since mercury (Hg) biogeochemistry in the Southern Ocean is minimally documented, we investigated Hg stable isotopes in the blood of seabirds breeding at different latitudes in the Antarctic, subantarctic and subtropical zones. Hg isotopic composition was determined in adult penguins (5 species) and skua chicks (2 species) from the Adélie Land (66°39′S, Antarctic) to Crozet Islands (46°25′S, subantarctic) and Amsterdam Island (37°47'S, subtropical). Mass-dependent (MDF, δ202Hg) and mass-independent (MIF, ∆199Hg) Hg isotopic values separated populations geographically. Antarctic seabirds exhibited lower δ202Hg values (-0.02 to 0.79 ‰, min-max) than subantarctic (0.88 to 2.12 ‰) and subtropical (1.44 to 2.37 ‰) seabirds. In contrast, ∆199Hg values varied slightly from Antarctic (1.31 to 1.73 ‰) to subtropical (1.69 to 2.04 ‰) waters. The extent of methylmercury (MeHg) photodemethylation extrapolated from ∆199Hg values was not significantly different between locations, implying that most of the bioaccumulated MeHg was of mesopelagic origin. The larger increase of MDF between the three latitudes co-varies with MeHg concentrations. This supports an increasing effect of specific biogenic Hg pathways from Antarctic to subtropical waters, such as Hg biological transformations and accumulations. This “biogenic effect” among different productive southern oceanic regions can also be related to different mixed layer depth dynamics and biological turnover that specifically influence the vertical transport between the mesopelagic and the photic zones. This study shows the first Hg isotopic data of the Southern Ocean at large scale and reveals how regional Southern Ocean dynamics and productivity control marine MeHg biogeochemistry and the exposure of seabirds to Hg contamination.