Predicted distributions and abundances of the sea turtle ‘lost years’ in the western North Atlantic Ocean

International audience Oceanic dispersal characterizes the early juvenile life‐stages of numerous marine species of conservation concern. This early stage may be a ‘critical period’ for many species, playing an overriding role in population dynamics. Often, relatively little information is available...

Full description

Bibliographic Details
Published in:Ecography
Main Authors: Putman, Nathan, Seney, Erin, Verley, Phlippe, Shaver, Donna, López‐castro, Melania, Cook, Melissa, Guzmán, Vicente, Brost, Beth, Ceriani, Simona, Mirón, Raúl de Jesús González Díaz, Peña, Luis Jaime, Tzeek, Miriam, Valverde, Roldán, Cantón, Cristóbal Cáceres G., Howell, Lyndsey, Ravell Ley, Jonathan, Tumlin, Mandy, Teas, Wendy, Caillouet, Charles, Cuevas, Eduardo, Gallaway, Benny, Richards, Paul, Mansfield, Katherine
Other Authors: Botanique et Modélisation de l'Architecture des Plantes et des Végétations (UMR AMAP), Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Cirad)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD France-Sud )-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), Institut Cochin (IC UM3 (UMR 8104 / U1016)), Université Paris Descartes - Paris 5 (UPD5)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)
Format: Article in Journal/Newspaper
Language:English
Published: HAL CCSD 2020
Subjects:
Online Access:https://hal.umontpellier.fr/hal-02531224
https://hal.umontpellier.fr/hal-02531224/document
https://hal.umontpellier.fr/hal-02531224/file/ecog.04929.pdf
https://doi.org/10.1111/ecog.04929
Description
Summary:International audience Oceanic dispersal characterizes the early juvenile life‐stages of numerous marine species of conservation concern. This early stage may be a ‘critical period’ for many species, playing an overriding role in population dynamics. Often, relatively little information is available on their distribution during this period, limiting the effectiveness of efforts to understand environmental and anthropogenic impacts on these species. Here we present a simple model to predict annual variation in the distribution and abundance of oceanic‐stage juvenile sea turtles based on species’ reproductive output, movement and mortality. We simulated dispersal of 25 cohorts (1993–2017) of oceanic‐stage juveniles by tracking the movements of virtual hatchling sea turtles released in a hindcast ocean circulation model. We then used estimates of annual hatchling production from Kemp's ridley Lepidochelys kempii (n = 3), green Chelonia mydas (n = 8) and loggerhead Caretta caretta (n = 5) nesting areas in the northwestern Atlantic (inclusive of the Gulf of Mexico, Caribbean Sea and eastern seaboard of the U.S.) and their stage‐specific mortality rates to weight dispersal predictions. The model's predictions indicate spatial heterogeneity in turtle distribution across their marine range, identify locations of increasing turtle abundance (notably along the U.S. coast), and provide valuable context for temporal variation in the stranding of young sea turtles across the Gulf of Mexico. Further effort to collect demographic, distribution and behavioral data that refine, complement and extend the utility of this modeling approach for sea turtles and other dispersive marine taxa is warranted. Finally, generating these spatially‐explicit predictions of turtle abundance required extensive international collaboration among scientists; our findings indicate that continued conservation of these sea turtle populations and the management of the numerous anthropogenic activities that operate in the northwestern Atlantic Ocean ...