Mercury stable isotopes in seabird eggs reflect a gradient from terrestrial geogenic to oceanic mercury reservoirs

cited By 17 International audience Elevated mercury concentrations ([Hg]) were found in Alaskan murre (Uria spp.) eggs from the coastal embayment of Norton Sound relative to insular colonies in the northern Bering Sea-Bering Strait region. Stable isotopes of Hg, carbon, and nitrogen were measured in...

Full description

Bibliographic Details
Published in:Environmental Science & Technology
Main Authors: Day, R.D., Roseneau, D.G., Bérail, Sylvain, Hobson, K.A., Donard, Olivier François Xavier, Vander Pol, S.S., Pugh, R.S., Moors, A.J., Long, S.E., Becker, P.R.
Other Authors: Institut des sciences analytiques et de physico-chimie pour l'environnement et les materiaux (IPREM), Université de Pau et des Pays de l'Adour (UPPA)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)
Format: Article in Journal/Newspaper
Language:English
Published: HAL CCSD 2012
Subjects:
Online Access:https://hal.archives-ouvertes.fr/hal-01590287
https://doi.org/10.1021/es2047156
Description
Summary:cited By 17 International audience Elevated mercury concentrations ([Hg]) were found in Alaskan murre (Uria spp.) eggs from the coastal embayment of Norton Sound relative to insular colonies in the northern Bering Sea-Bering Strait region. Stable isotopes of Hg, carbon, and nitrogen were measured in the eggs to investigate the source of this enrichment. Lower δ13C values in Norton Sound eggs (-23.3‰ to -20.0‰) relative to eggs from more oceanic colonies (-20.9‰ to -18.7‰) indicated that a significant terrestrial carbon source was associated with the elevated [Hg] in Norton Sound, implicating the Yukon River and smaller Seward Peninsula watersheds as the likely Hg source. The increasing [Hg] gradient extending inshore was accompanied by strong decreasing gradients of δ202Hg and Δ199Hg in eggs, indicating lower degrees of mass-dependent (MDF) and mass-independent Hg fractionation (MIF) (respectively) in the Norton Sound food web. Negative or zero MDF and MIF signatures are typical of geological Hg sources, which suggests murres in Norton Sound integrated Hg from a more recent geological origin that has experienced a relatively limited extent of aquatic fractionation relative to more oceanic colonies. The association of low δ202Hg and Δ199Hg with elevated [Hg] and terrestrial δ13C values suggested that Hg stable isotopes in murre eggs effectively differentiated terrestrial/geogenic Hg sources from oceanic reservoirs. © 2012 American Chemical Society.