Assessment of mercury speciation in feathers using species-specific isotope dilution analysis

International audience Seabirds are considered as effective sentinels of environmental marine contamination and their feathers are extensively used as non-lethal samples for contaminant biomonitoring. This tissue represents the main route for mercury (Hg) elimination in seabirds and contains predomi...

Full description

Bibliographic Details
Published in:Talanta
Main Authors: Renedo, Marina, Bustamante, Paco, Tessier, Emmanuel, Pedrero, Zoyne, Cherel, Yves, Amouroux, David
Other Authors: LIttoral ENvironnement et Sociétés (LIENSs), La Rochelle Université (ULR)-Centre National de la Recherche Scientifique (CNRS), Institut des sciences analytiques et de physico-chimie pour l'environnement et les materiaux (IPREM), Université de Pau et des Pays de l'Adour (UPPA)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Centre d'Études Biologiques de Chizé - UMR 7372 (CEBC), Institut National de la Recherche Agronomique (INRA)-La Rochelle Université (ULR)-Centre National de la Recherche Scientifique (CNRS)
Format: Article in Journal/Newspaper
Language:English
Published: HAL CCSD 2017
Subjects:
Online Access:https://hal.science/hal-01559164
https://hal.science/hal-01559164/document
https://hal.science/hal-01559164/file/Renedo%20et%20al%202017%20TALANTA.pdf
https://doi.org/10.1016/j.talanta.2017.05.081
Description
Summary:International audience Seabirds are considered as effective sentinels of environmental marine contamination and their feathers are extensively used as non-lethal samples for contaminant biomonitoring. This tissue represents the main route for mercury (Hg) elimination in seabirds and contains predominantly methylmercury (MeHg). In this work, we developed a robust analytical technique for precise and accurate simultaneous quantification of MeHg, inorganic Hg (iHg) and consequently total Hg (THg), in feathers by gas-chromatography (GC)-ICPMS analyses using species-specific isotope dilution technique. An optimisation of the extraction method was carried out by testing different extraction systems, reagents and spiking procedures using an internal reference feather sample. The procedure was validated for MeHg and THg concentrations with a human hair certified reference material. Microwave nitric acid extraction with spike addition before the extraction provided the best recovery and was chosen as the most appropriate species simultaneous extraction method (SSE). An additional assessment was performed by comparison of our developed extraction method and a MeHg specific extraction technique (MSE) classically used for Hg speciation studies on feathers. The developed method was applied to feather samples from a large number of seabirds from the Southern Ocean (penguins, albatrosses, petrels and skuas) to investigate the variability of Hg speciation across a large range of Hg exposure conditions and concentrations. In all cases, MeHg accounted for > 90% of THg, thus verifying the predominance of organic Hg over iHg in feathers.