When and why sediments fail to record the geomagnetic field during polarity reversals

International audience We present four new records of the Matuyama–Brunhes (M–B) reversal from sediments of the Equatorial Indian Ocean, West Equatorial Pacific and North Atlantic Oceans with deposition rates between 2 cm/kyr and 4.5 cm/kyr. The magnetic measurements were performed using 8 cc cubic...

Full description

Bibliographic Details
Published in:Earth and Planetary Science Letters
Main Authors: Valet, Jean-Pierre, Meynadier, Laure, Simon, Quentin, Thouveny, Nicolas
Other Authors: Institut de Physique du Globe de Paris (IPGP), Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris Diderot - Paris 7 (UPD7)-Université de La Réunion (UR)-Institut de Physique du Globe de Paris (IPG Paris)-Centre National de la Recherche Scientifique (CNRS), Centre européen de recherche et d'enseignement des géosciences de l'environnement (CEREGE), Institut de Recherche pour le Développement (IRD)-Institut National de la Recherche Agronomique (INRA)-Aix Marseille Université (AMU)-Collège de France (CdF (institution))-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)
Format: Article in Journal/Newspaper
Language:English
Published: HAL CCSD 2016
Subjects:
Online Access:https://hal-amu.archives-ouvertes.fr/hal-01419504
https://hal-amu.archives-ouvertes.fr/hal-01419504/document
https://hal-amu.archives-ouvertes.fr/hal-01419504/file/valet-etal-2016-EPSL.pdf
https://doi.org/10.1016/j.epsl.2016.07.055
Description
Summary:International audience We present four new records of the Matuyama–Brunhes (M–B) reversal from sediments of the Equatorial Indian Ocean, West Equatorial Pacific and North Atlantic Oceans with deposition rates between 2 cm/kyr and 4.5 cm/kyr. The magnetic measurements were performed using 8 cc cubic samples and provided well-defined reverse and normal polarity directions prior and after the last reversal. In three records stepwise demagnetization of the transitional samples revealed a succession of scattered directions instead of a well-defined characteristic component of magnetization. There is no relationship with changes in magnetic mineralogy, magnetic concentration and magnetic grain sizes. This behavior could be caused by weakly magnetized sediment. However the transitional samples of two cores have almost three orders of magnitude stronger magnetizations than the non-transitional samples that yielded unambiguous primary directions in the other two cores. Moreover a similar proportion of magnetic grains was aligned in all records. Therefore, the large amount of magnetic grains oriented by the weak transitional field did not contribute to improve the definition of the characteristic component. We infer that the weakness of the field might not be only responsible. Assuming that the transitional period is dominated by a multipolar field, it is likely that the rapidly moving non-dipole components generated different directions that were recorded over the 2 cm stratigraphic thickness of each sample. These components are carried by grains with similar magnetic properties yielding scattered directions during demagnetization. In contrast, the strongly magnetized sediments of the fourth core from the West Equatorial Pacific Ocean were exempt of problems during demagnetization. The declinations rotate smoothly between the two polarities while the inclinations remain close to zero. This scenario results from post-depositional realignment that integrated various amounts of pre-and post-transitional magnetic ...