GRID INTEGRATION OF WAVE AND TIDAL ENERGY

International audience Wave and tidal energy provide a renewable source of electricity. However, their inherent fluctuations may have a negative impact on the power quality of a local electrical network. Grid operators assess this impact through the use of dynamic models of the generation units, whi...

Full description

Bibliographic Details
Main Authors: Blavette, Anne, Lewis, Antony, Egan, Michael, O 'Sullivan, Dara
Other Authors: Systèmes et Applications des Technologies de l'Information et de l'Energie (SATIE), École normale supérieure - Cachan (ENS Cachan)-Université Paris-Sud - Paris 11 (UP11)-Institut Français des Sciences et Technologies des Transports, de l'Aménagement et des Réseaux (IFSTTAR)-École normale supérieure - Rennes (ENS Rennes)-Université de Cergy Pontoise (UCP), Université Paris-Seine-Université Paris-Seine-Conservatoire National des Arts et Métiers CNAM (CNAM), HESAM Université - Communauté d'universités et d'établissements Hautes écoles Sorbonne Arts et métiers université (HESAM)-HESAM Université - Communauté d'universités et d'établissements Hautes écoles Sorbonne Arts et métiers université (HESAM)-Centre National de la Recherche Scientifique (CNRS), University College Cork (UCC), Charles Parsons Initiative
Format: Conference Object
Language:English
Published: HAL CCSD 2011
Subjects:
Online Access:https://hal.archives-ouvertes.fr/hal-01265982
https://hal.archives-ouvertes.fr/hal-01265982/document
https://hal.archives-ouvertes.fr/hal-01265982/file/Anne_Blavette_HMRC_Ireland_final_revised%20v3_HAL.pdf
Description
Summary:International audience Wave and tidal energy provide a renewable source of electricity. However, their inherent fluctuations may have a negative impact on the power quality of a local electrical network. Grid operators assess this impact through the use of dynamic models of the generation units, which are inserted into the overall power system model. Providing these models is a compulsory step for any power generator to procure a grid connection above a specified power capacity. Significant issues were encountered in the wind energy industry regarding the dynamic modelling of devices, among which were model numerical instability, poor dynamic model quality and model incompatibility. Considering the large diversity of device types in the emerging ocean energy industry, these problems are considered as a major barrier to the larger scale grid-integration of marine energy converters. Dynamic models must clearly demonstrate the compliance of the actual power generation device and array of devices to the grid code requirements for grid-connection to be allowed. A further barrier to grid connection of ocean energy devices is that existing grid codes – mainly written in the context of wind energy-may be irrelevant or inadequate for ocean energy devices. This paper presents an overview of these issues, and details a radically different approach to the dynamic modelling of ocean energy devices that will assist in overcoming the issues previously encountered in the development of wind turbine models. It also highlights the gaps and inadequacy regarding grid code requirements for ocean energy devices, and provides some recommendations for a new ocean energy grid code.