Numerical study of hydrodynamic impact on bubbly water

The phenomenon of slamming on a bubbly liquid has many occurrences in marine and costal engineering. However, experimental or numerical data on the effect of the presence of gas bubbles within the liquid on the impact loads are scarce and the related physical mechanisms are poorly understood. The ai...

Full description

Bibliographic Details
Main Authors: Elhimer, Mehdi, El Malki Alaoui, Aboulghit, Croci, Kilian, Gabillet, Céline, Jacques, Nicolas
Other Authors: École Nationale Supérieure de Techniques Avancées Bretagne (ENSTA Bretagne), Institut de Recherche de l'Ecole Navale (IRENAV), Université de Bordeaux (UB)-Institut Polytechnique de Bordeaux-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Arts et Métiers Sciences et Technologies, HESAM Université - Communauté d'universités et d'établissements Hautes écoles Sorbonne Arts et métiers université (HESAM)-HESAM Université - Communauté d'universités et d'établissements Hautes écoles Sorbonne Arts et métiers université (HESAM)
Format: Conference Object
Language:English
Published: HAL CCSD 2015
Subjects:
Online Access:https://hal.science/hal-01139860
https://hal.science/hal-01139860/document
https://hal.science/hal-01139860/file/IRENav_OMAE_Juin2015_GABILLET.pdf
Description
Summary:The phenomenon of slamming on a bubbly liquid has many occurrences in marine and costal engineering. However, experimental or numerical data on the effect of the presence of gas bubbles within the liquid on the impact loads are scarce and the related physical mechanisms are poorly understood. The aim of the present paper is to study numerically the relationship between the void volume fraction and the impact loads. For that purpose, numerical simulations of the impact of a cone on bubbly water have been performed using the finite element code ABAQUS/Explicit. The present results show the diminution ofthe impact loads with the increase of the void fraction. This effect appears to be related to the high compressibility of the liquid-gas mixture. International audience The phenomenon of slamming on a bubbly liquid has many occurrences in marine and costal engineering. However, experimental or numerical data on the effect of the presence of gas bubbles within the liquid on the impact loads are scarce and the related physical mechanisms are poorly understood. The aim of the present paper is to study numerically the relationship between the void volume fraction and the impact loads. For that purpose, numerical simulations of the impact of a cone on bubbly water have been performed using the finite element code ABAQUS/Explicit. The present results show the diminution ofthe impact loads with the increase of the void fraction. This effect appears to be related to the high compressibility of the liquid-gas mixture.