Warm climate isotopic simulations: What do we learn about interglacial signals in Greenland ice cores?

International audience Measurements of Last Interglacial stable water isotopes in ice cores show that central Greenland d18O increased by at least 3‰ compared to present day. Attempting to quantify the Greenland interglacial temperature change from these ice core measurements rests on our ability to...

Full description

Bibliographic Details
Published in:Quaternary Science Reviews
Main Authors: Sime, L.C., Risi, Camille, Tindall, J.C., Sjolte, J., Wolff, E.W., Masson-Delmotte, Valérie, Capron, E.
Other Authors: British Antarctic Survey (BAS), Natural Environment Research Council (NERC), Cooperative Institute for Research in Environmental Sciences (CIRES), University of Colorado Boulder -National Oceanic and Atmospheric Administration (NOAA), Laboratoire de Météorologie Dynamique (UMR 8539) (LMD), Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-École polytechnique (X)-École des Ponts ParisTech (ENPC)-Centre National de la Recherche Scientifique (CNRS)-Département des Géosciences - ENS Paris, École normale supérieure - Paris (ENS-PSL), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-École normale supérieure - Paris (ENS-PSL), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL), School of Earth and Environment Leeds (SEE), University of Leeds, Centre for Ice and Climate Copenhagen, Niels Bohr Institute Copenhagen (NBI), Faculty of Science Copenhagen, University of Copenhagen = Københavns Universitet (UCPH)-University of Copenhagen = Københavns Universitet (UCPH)-Faculty of Science Copenhagen, University of Copenhagen = Københavns Universitet (UCPH)-University of Copenhagen = Københavns Universitet (UCPH), GeoBiosphere Science Centre, Quaternary Sciences, Lund University, Slvegatan 12, SE-223 62 Lund, Sweden, Laboratoire des Sciences du Climat et de l'Environnement Gif-sur-Yvette (LSCE), Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Glaces et Continents, Climats et Isotopes Stables (GLACCIOS), Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)
Format: Article in Journal/Newspaper
Language:English
Published: HAL CCSD 2013
Subjects:
Online Access:https://hal.archives-ouvertes.fr/hal-01108532
https://hal.archives-ouvertes.fr/hal-01108532/document
https://hal.archives-ouvertes.fr/hal-01108532/file/JQSR-D-12-00327R1-1_postprint.pdf
https://doi.org/10.1016/j.quascirev.2013.01.009
Description
Summary:International audience Measurements of Last Interglacial stable water isotopes in ice cores show that central Greenland d18O increased by at least 3‰ compared to present day. Attempting to quantify the Greenland interglacial temperature change from these ice core measurements rests on our ability to interpret the stable water isotope content of Greenland snow. Current orbitally driven interglacial simulations do not show d18O or temperature rises of the correct magnitude, leading to difficulty in using only these experiments to inform our understanding of higher interglacial d18O. Here, analysis of greenhouse gas warmed simulations from two isotope-enabled general circulation models, in conjunction with a set of Last Interglacial sea surface observations, indicates a possible explanation for the interglacial d18O rise. A reduction in the winter time sea ice concentration around the northern half of Greenland, together with an increase in sea surface temperatures over the same region, is found to be sufficient to drive a >3‰ interglacial enrichment in central Greenland snow. Warm climate d18O and dD in precipitation falling on Greenland are shown to be strongly influenced by local sea surface condition changes: local sea surface warming and a shrunken sea ice extent increase the proportion of water vapour from local (isotopically enriched) sources, compared to that from distal (isotopically depleted) sources. Precipitation intermittency changes, under warmer conditions, leads to geographical variability in the d18O against temperature gradients across Greenland. Little sea surface warming around the northern areas of Greenland leads to low d18O against temperature gradients (0.1-0.3‰ per °C), whilst large sea surface warmings in these regions leads to higher gradients (0.3-0.7‰ per °C). These gradients imply a wide possible range of present day to interglacial temperature increases (4 to >10 °C). Thus, we find that uncertainty about local interglacial sea surface conditions, rather than precipitation ...