Longpath DOAS observations of surface BrO at Summit, Greenland

International audience Reactive halogens, and in particular bromine oxide (BrO), have frequently been observed in regions with large halide reservoirs, for example during bromine catalyzed coastal polar ozone depletion events. Much less is known about the presence and impact of reactive halogens in...

Full description

Bibliographic Details
Published in:Atmospheric Chemistry and Physics
Main Authors: Stutz, J., Thomas, Jennie L., Hurlock, S. C., Schneider, M., von Glasow, R., Piot, M., Gorham, K., Burkhart, J. F., Ziemba, L., Dibb, J. E., Lefer, B. L.
Other Authors: Department of Atmospheric and Oceanic Sciences Los Angeles (AOS), University of California Los Angeles (UCLA), University of California (UC)-University of California (UC), School of Environmental Sciences Norwich, University of East Anglia Norwich (UEA), EnBW Trading GmbH, School of Physical Sciences Irvine, University of California Irvine (UC Irvine), Norwegian Institute for Air Research (NILU), NASA Langley Research Center Hampton (LaRC), Institute for the Study of Earth, Oceans, and Space Durham (EOS), University of New Hampshire (UNH), Department of Earth and Atmospheric Sciences Houston, University of Houston
Format: Article in Journal/Newspaper
Language:English
Published: HAL CCSD 2011
Subjects:
Online Access:https://hal.archives-ouvertes.fr/hal-01004033
https://hal.archives-ouvertes.fr/hal-01004033/document
https://hal.archives-ouvertes.fr/hal-01004033/file/acp-11-9899-2011.pdf
https://doi.org/10.5194/acp-11-9899-2011
Description
Summary:International audience Reactive halogens, and in particular bromine oxide (BrO), have frequently been observed in regions with large halide reservoirs, for example during bromine catalyzed coastal polar ozone depletion events. Much less is known about the presence and impact of reactive halogens in areas without obvious halide reservoirs, such as the polar ice sheets or continental snow. We report the first LP-DOAS measurements of BrO at Summit research station in the center of the Greenland ice sheet at an altitude of 3200 m. BrO mixing ratios in May 2007 and June 2008 were typically between 1-3 pmol mol−1, with maxima of up to 5 pmol mol−1. These measurements unequivocally show that halogen chemistry is occurring in the remote Arctic, far from known bromine reservoirs, such as the ocean. During periods when FLEXPART retroplumes show that airmasses resided on the Greenland ice sheet for 3 or more days, BrO exhibits a clear diurnal variation, with peak mixing ratios of up to 3 pmol mol−1 in the morning and at night. The diurnal cycle of BrO can be explained by a changing boundary layer height combined with photochemical formation of reactive bromine driven by solar radiation at the snow surface. The shallow stable boundary layer in the morning and night leads to an accumulation of BrO at the surface, leading to elevated BrO despite the expected smaller release from the snowpack during these times of low solar radiation. During the day when photolytic formation of reactive bromine is expected to be highest, efficient mixing into a deeper neutral boundary layer leads to lower BrO mixing ratios than during mornings and nights. The extended period of contact with the Greenland snowpack combined with the diurnal profile of BrO, modulated by boundary layer height, suggests that photochemistry in the snow is a significant source of BrO measured at Summit during the 2008 experiment. In addition, a rapid transport event on 4 July 2008, during which marine air from the Greenland east coast was rapidly transported to ...