Optimized Predictive Two-Dimensional Hydrodynamic Model of the Gironde Estuary in France.

International audience A two-dimensional hydrodynamic model of the macrotidal Gironde estuary (France) is developed and shown to predict the tide propagation with an accuracy of < 10 cm on water level. The 170-km-long computational domain represents, in detail, the central part of the estuary, ch...

Full description

Bibliographic Details
Published in:Journal of Waterway, Port, Coastal, and Ocean Engineering
Main Authors: Huybrechts, Nicolas, Villaret, Catherine, Lyard, Florent
Other Authors: Laboratoire d'Hydraulique Saint-Venant / Saint-Venant Laboratory for Hydraulics (Saint-Venant), École des Ponts ParisTech (ENPC)-PRES Université Paris-Est-EDF (EDF)-Avant création Cerema, Laboratoire National d’Hydraulique et Environnement (EDF R&D LNHE), EDF R&D (EDF R&D), EDF (EDF)-EDF (EDF), Laboratoire d'études en Géophysique et océanographie spatiales (LEGOS), Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales Toulouse (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Institut de Recherche pour le Développement (IRD)-Centre National d'Études Spatiales Toulouse (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Centre National de la Recherche Scientifique (CNRS)
Format: Article in Journal/Newspaper
Language:English
Published: HAL CCSD 2012
Subjects:
Online Access:https://hal.science/hal-00766553
https://doi.org/10.1061/(ASCE)WW.1943-5460.0000129
Description
Summary:International audience A two-dimensional hydrodynamic model of the macrotidal Gironde estuary (France) is developed and shown to predict the tide propagation with an accuracy of < 10 cm on water level. The 170-km-long computational domain represents, in detail, the central part of the estuary, characterized by a complex multichannel geometry. This model provides an efficient and accurate operational tool by using an optimized finite-element numerical scheme. Particular attention is paid to the offshore boundary conditions and to the calibration procedure. On the offshore boundary, the tidal signal is decomposed into harmonics whose main amplitudes and phases are obtained from a regional tidal model covering the North East Atlantic. Sensitivity studies are conducted to determine the influence of the harmonics number and harmonic constants on tidal prediction at the mouth. Differences up to 20 ∼ 30 cm in water level at the estuary mouth are observed between the scenarios for the tidal forcing. The calibration of the friction coefficient is thus linked to the tidal forcing scenario. A calibration procedure for the friction coefficient is also presented that can be applied to estuarine conditions. The van Rijn method is applied to predict a first set of values for the friction coefficients as a function of grain size and flow parameters. These predicted mean (time-averaged) coefficients are then adjusted with a maximum of 15% to reproduce in a best way water level and velocity measurements.