Identifying foraging events in deep diving southern elephant seals, Mirounga leonina, using acceleration data loggers

International audience Southern elephant seals (Mirounga leonina) range widely throughout the Southern Ocean and are associated with important habitats (e.g., ice edges, shelf) where they accumulate energy to fuel their reproductive efforts on land. Knowledge of the fine scale foraging behaviour use...

Full description

Bibliographic Details
Published in:Deep Sea Research Part II: Topical Studies in Oceanography
Main Authors: Gallon, S.L., Bailleul, Frédéric, Charrassin, Jean-Benoit, Guinet, Christophe, Bost, Charles-André, Handrich, Yves, Hindell, Mark A.
Other Authors: Institute for Marine and Antarctic Studies Hobart (IMAS), University of Tasmania Hobart, Australia (UTAS), Centre d'Études Biologiques de Chizé (CEBC), Institut National de la Recherche Agronomique (INRA)-Centre National de la Recherche Scientifique (CNRS), Laboratoire d'Océanographie et du Climat : Expérimentations et Approches Numériques (LOCEAN), Muséum national d'Histoire naturelle (MNHN)-Institut de Recherche pour le Développement (IRD)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Institut Pierre-Simon-Laplace (IPSL (FR_636)), École normale supérieure - Paris (ENS-PSL), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris Diderot - Paris 7 (UPD7)-École polytechnique (X)-Centre National d'Études Spatiales Toulouse (CNES)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-École normale supérieure - Paris (ENS-PSL), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris Diderot - Paris 7 (UPD7)-École polytechnique (X)-Centre National d'Études Spatiales Toulouse (CNES)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Département Ecologie, Physiologie et Ethologie (DEPE-IPHC), Institut Pluridisciplinaire Hubert Curien (IPHC), Université de Strasbourg (UNISTRA)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS)-Université de Strasbourg (UNISTRA)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS)
Format: Article in Journal/Newspaper
Language:English
Published: HAL CCSD 2013
Subjects:
Online Access:https://hal.science/hal-00762201
https://doi.org/10.1016/j.dsr2.2012.09.002
Description
Summary:International audience Southern elephant seals (Mirounga leonina) range widely throughout the Southern Ocean and are associated with important habitats (e.g., ice edges, shelf) where they accumulate energy to fuel their reproductive efforts on land. Knowledge of the fine scale foraging behaviour used to garner this energy, however, is limited. For the first time, acceleration loggers were deployed on three adult southern elephant seals during a translocation study at Kerguelen Island. The aims of the study were to (1) identify prey capture attempts using 2-D accelerometer tags deployed on the head of southern elephant seals, (2) compare the number of foraging dives identified by simple dive depth profiles and accelerometer profiles and (3) compare dive characteristics between prey encounter and non-prey encounter dives. The 2-D loggers recorded depth every second, surge and heave accelerations at 8 or 16 Hz and were carried for periods between 23 and 121 h. Rapid head movements were interpreted to be associated with prey encounter events. Acceleration data detected possible prey encounter events in 39-52% of dives whilst 67-80% of dives were classified as foraging dives when using dive depth profiles alone. Prey encounters occurred in successive dives during days and nights and lasted between tenths of a second and 7.6 min. Binomial linear mixed effect models showed that seals were diving significantly deeper and increased both descent rate and bottom duration when encountering prey. Dive duration, however, did not significantly increase during dives with prey encounters. These results are in accordance with optimal foraging theory, which predicts that deep divers should increase both their transit rates and the time spent at depth when a profitable prey patch is encountered. These findings indicate that this technique is promising as it more accurately detects possible prey encounter events compared with dive depth profiles alone and thus provides a better understanding of seal foraging strategies.