Multimodel climate and variability of the stratosphere

International audience The stratospheric climate and variability from simulations of sixteen chemistry-climate models is evaluated. On average the polar night jet is well reproduced though its variability is less well reproduced with a large spread between models. Polar temperature biases are less t...

Full description

Bibliographic Details
Published in:Journal of Geophysical Research
Main Authors: Butchart, N., Charlton-Perez, Andrew J., Cionni, I., Hardiman, S. C., Haynes, P. H., Kruger, K., Kushner, P. J., Newman, P. A., Osprey, S. M., Perlwitz, J., Sigmond, M., Wang, L., Akiyoshi, H., Austin, J., Bekki, Slimane, Baumgaertner, A., Braesicke, P., Bruhl, C., Chipperfield, M., Dameris, M., Dhomse, S., Eyring, V., Garcia, R., Garny, H., Jockel, P., Lamarque, J. F., Marchand, Marion, Michou, M., Morgenstern, Olaf, Nakamura, T., Pawson, S., Plummer, D., Pyle, J., Rozanov, E., Scinocca, J., Shepherd, T. G., Shibata, K., Smale, Dan, Teyssedre, H., Tian, W., Waugh, D., Yamashita, Y.
Other Authors: Met Office Hadley Centre for Climate Change (MOHC), United Kingdom Met Office Exeter, Department of Meteorology Reading, University of Reading (UOR), DLR Institut für Physik der Atmosphäre (IPA), Deutsches Zentrum für Luft- und Raumfahrt Oberpfaffenhofen-Wessling (DLR), NCAS-Climate Cambridge, Department of Chemistry Cambridge, UK, University of Cambridge UK (CAM)-University of Cambridge UK (CAM), Leibniz-Institut für Meereswissenschaften (IFM-GEOMAR), Department of Physics Toronto, University of Toronto, NASA Goddard Space Flight Center (GSFC), Department of Atmospheric, Oceanic and Planetary Physics Oxford (AOPP), University of Oxford, Cooperative Institute for Research in Environmental Sciences (CIRES), University of Colorado Boulder -National Oceanic and Atmospheric Administration (NOAA), National Institute for Environmental Studies (NIES), NOAA Geophysical Fluid Dynamics Laboratory (GFDL), National Oceanic and Atmospheric Administration (NOAA), University Corporation for Atmospheric Research (UCAR), STRATO - LATMOS, Laboratoire Atmosphères, Milieux, Observations Spatiales (LATMOS), Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Max Planck Institute for Chemistry (MPIC), Max-Planck-Gesellschaft, School of Earth and Environment Leeds (SEE), University of Leeds, National Center for Atmospheric Research Boulder (NCAR), Centre national de recherches météorologiques (CNRM), Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP), Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales Toulouse (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales Toulouse (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Centre National de la Recherche Scientifique (CNRS), National Institute of Water and Atmospheric Research Lauder (NIWA), Canadian Centre for Climate Modelling and Analysis (CCCma), Environment and Climate Change Canada, Physikalisch-Meteorologisches Observatorium Davos/World Radiation Center (PMOD/WRC), Meteorological Research Institute Tsukuba (MRI), Japan Meteorological Agency (JMA), Johns Hopkins University (JHU)
Format: Article in Journal/Newspaper
Language:English
Published: HAL CCSD 2011
Subjects:
Online Access:https://hal.science/hal-00550792
https://hal.science/hal-00550792/document
https://hal.science/hal-00550792/file/2010JD014995.pdf
https://doi.org/10.1029/2010JD014995
Description
Summary:International audience The stratospheric climate and variability from simulations of sixteen chemistry-climate models is evaluated. On average the polar night jet is well reproduced though its variability is less well reproduced with a large spread between models. Polar temperature biases are less than 5 K except in the southern hemisphere (SH) lower stratosphere in spring. The accumulated area of low temperatures responsible for polar stratospheric cloud formation is accurately reproduced for the Antarctic but underestimated for the Arctic. The shape and position of the polar vortex is well simulated, as is the tropical upwelling in the lower stratosphere. There is a wide model spread in the frequency of major sudden stratospheric warnings (SSWs), late biases in the break up of the SH vortex and a weak annual cycle in the zonal wind in the tropical upper stratosphere. Quantitatively, “metrics” indicate a wide spread in model performance for most diagnostics with systematic biases in many, and poorer performance in the SH than in the northern hemisphere (NH). Correlations were found in the SH between errors in the final warming, polar temperatures, the leading mode of variability, and jet strength, and in the NH between errors in polar temperatures, frequency of major SSWs and jet strength. Models with a stronger QBO have stronger tropical upwelling, and a colder NH vortex. Both the qualitative and quantitative analysis in-