Hydrothermal contribution to the oceanic dissolved iron inventory

International audience Iron limits phytoplankton growth and hence the biological carbon pump in the Southern Ocean. Models assessing the impacts of iron on the global carbon cycle generally rely on dust input and sediment resuspension as the predominant sources. Although it was previously thought th...

Full description

Bibliographic Details
Published in:Nature Geoscience
Main Authors: Tagliabue, Alessandro, Bopp, Laurent, Dutay, Jean-Claude, Bowie, Andrew, Chever, Fanny, Jean-Baptiste, P., Bucciarelli, Eva, Lannuzel, Delphine, Remenyi, Thomas, Sarthou, Géraldine, Aumont, Olivier, Gehlen, M., Jeandel, Catherine
Other Authors: Laboratoire des Sciences du Climat et de l'Environnement Gif-sur-Yvette (LSCE), Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Modélisation du climat (CLIM), Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Antarctic Climate and Ecosystems Cooperative Research Centre (ACE-CRC), School of Chemistry (ACROSS), University of Tasmania Hobart, Australia (UTAS), Laboratoire des Sciences de l'Environnement Marin (LEMAR) (LEMAR), Institut de Recherche pour le Développement (IRD)-Institut Français de Recherche pour l'Exploitation de la Mer (IFREMER)-Université de Brest (UBO)-Institut Universitaire Européen de la Mer (IUEM), Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Université de Brest (UBO)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Université de Brest (UBO)-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS), Glaces et Continents, Climats et Isotopes Stables (GLACCIOS), Université de Brest (UBO), Laboratoire de physique des océans (LPO), Institut de Recherche pour le Développement (IRD)-Institut Français de Recherche pour l'Exploitation de la Mer (IFREMER)-Université de Brest (UBO)-Centre National de la Recherche Scientifique (CNRS), Modelling the Earth Response to Multiple Anthropogenic Interactions and Dynamics (MERMAID), Laboratoire d'études en Géophysique et océanographie spatiales (LEGOS), Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales Toulouse (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Institut de Recherche pour le Développement (IRD)-Centre National d'Études Spatiales Toulouse (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Centre National de la Recherche Scientifique (CNRS), Financial support from grant GOCE-511176 (EU FP6 RTP project CARBOOCEAN) funded by the European Commission, CNRS (France), International Polar Year GEOTRACES, the Australian Government’s Cooperative Research Centres Programme through the Antarctic Climate and Ecosystems CRC (ACE CRC) and the Australian Antarctic Division (project AAS 2900). This work was carried out using HPC resources from GENCI-IDRIS (Grant 2009-10040), GEOTRACES, European Project: 30029,CARBOOCEAN
Format: Article in Journal/Newspaper
Language:English
Published: HAL CCSD 2010
Subjects:
Online Access:https://hal.science/hal-00480657
https://doi.org/10.1038/NGEO818
Description
Summary:International audience Iron limits phytoplankton growth and hence the biological carbon pump in the Southern Ocean. Models assessing the impacts of iron on the global carbon cycle generally rely on dust input and sediment resuspension as the predominant sources. Although it was previously thought that most iron from deep-ocean hydrothermal activity was inaccessible to phytoplankton because of the formation of particulates, it has been suggested that iron from hydrothermal activity may be an important source of oceanic dissolved iron. Here we use a global ocean model to assess the impacts of an annual dissolved iron flux of approximately 9 108 mol, as estimated from regional observations of hydrothermal activity, on the dissolved iron inventory of the world's oceans. We find the response to the input of hydrothermal dissolved iron is greatest in the Southern Hemisphere oceans. In particular, observations of the distribution of dissolved iron in the Southern Ocean3 (Chever et al., manuscript in preparation; Bowie et al., manuscript in preparation) can be replicated in our simulations only when our estimated iron flux from hydrothermal sources is included. As the hydrothermal flux of iron is relatively constant over millennial timescales, we propose that hydrothermal activity can buffer the oceanic dissolved iron inventory against shorter-term fluctuations in dust deposition.