Alternating-code experiment for plasma-line studies

International audience We present results of the first plasma-line measurement of the incoherent spectrum using the alternating-code technique with the EISCAT VHF radar. This technique, which has earlier mostly been used to measure high-resolution E-region ion-line spectra, turned out to be a very g...

Full description

Bibliographic Details
Main Authors: Guio, P., Bjørnå, N., Kofman, W.
Other Authors: The Auroral Observatory, University of Tromsø (UiT), Centre d'Études des Phénomènes Aléatoires et Géophysiques (CEPHAG), École Nationale Supérieure d'Ingénieurs Électriciens de Grenoble (ENSIEG)-Centre National de la Recherche Scientifique (CNRS)
Format: Article in Journal/Newspaper
Language:English
Published: HAL CCSD 1996
Subjects:
Online Access:https://hal.science/hal-00329061
https://hal.science/hal-00329061/document
https://hal.science/hal-00329061/file/angeo-14-1473-1996.pdf
Description
Summary:International audience We present results of the first plasma-line measurement of the incoherent spectrum using the alternating-code technique with the EISCAT VHF radar. This technique, which has earlier mostly been used to measure high-resolution E-region ion-line spectra, turned out to be a very good alternative to other techniques for plasma-line measurements. The experiment provides simultaneous measurement of the ion line and downshifted and upshifted plasma-line spectra with an altitude resolution of 3 km and a temporal resolution of 10 s. The measurements are taken around the peak of the F region, but not necessarily at the peak itself, as is the case with the long-pulse technique. The condition for success is that the scale height should be large enough such that the backscattered signal from the range extent of one gate falls inside the receiver filter. The data are analysed and the results are combined with the results of the ion-line data analysis to estimate electron mean drift velocity and thereafter electric currents along the line of sight of the radar using both the standard dispersion relation assuming a Maxwellian electron velocity distribution and the more recent model including a heat-flow correction term.