Chemoenzymatic dynamic kinetic resolution of rac-1-phenylethanol in ionic liquids and ionic liquids/supercritical carbon dioxide systems.

Continuous dynamic kinetic resolution processes in different ionic liquid/supercritical carbon dioxide biphasic systems were carried out by simultaneously using both immobilized Candida antarctica lipase B (Novozym 435) and silica modified with benzenosulfonic acid (SCX) catalysts at 40 degrees C an...

Full description

Bibliographic Details
Published in:Biotechnology Letters
Main Authors: Lozano, Pedro, de Diego, Teresa, Larnicol, Mickaël, Vaultier, Michel, Iborra, José L.
Other Authors: Synthèse et électrosynthèse organiques (SESO), Université de Rennes 1 (UR1), Université de Rennes (UNIV-RENNES)-Université de Rennes (UNIV-RENNES)-Centre National de la Recherche Scientifique (CNRS)
Format: Article in Journal/Newspaper
Language:English
Published: HAL CCSD 2006
Subjects:
Online Access:https://hal.science/hal-00097892
https://doi.org/10.1007/s10529-006-9130-7
Description
Summary:Continuous dynamic kinetic resolution processes in different ionic liquid/supercritical carbon dioxide biphasic systems were carried out by simultaneously using both immobilized Candida antarctica lipase B (Novozym 435) and silica modified with benzenosulfonic acid (SCX) catalysts at 40 degrees C and 10 MPa. SCX was seen to act as an efficient heterogeneous chemical catalyst for the racemization of (S)-1-phenylethanol in different ionic liquid media ([emim][NTf(2)], [btma][NTf(2)] and [bmim][PF(6)]). Coating both chemical and enzymatic catalysts with ILs greatly improved the efficiency of the process, providing a good yield (76%) of (R)-1-phenylethyl propionate product with excellent enantioselectivity (ee = 91-98%) in continuous operation.