Sea Lice ( Lepeophtheirus salmonis) Infestation Reduces the Ability of Peripheral Blood Monocytic Cells (PBMCs) to Respond to and Control Replication of Salmonid Alphavirus in Atlantic Salmon ( Salmo salar L.)

Here we have studied the impact of lice (Lepeophtheirus salmonis) infestation of donor fish on the ability of isolated peripheral blood monocytes (PBMCs) to control the replication of salmonid alphavirus (SAV) ex vivo. PBMCs were collected by Percoll gradients at eight and nine weeks post copepodid...

Full description

Bibliographic Details
Published in:Viruses
Main Authors: Evensen, Øystein, Gamil, Amr, Gadan, Koestan, Gislefoss, Elisabeth
Format: Article in Journal/Newspaper
Language:English
Published: 2021
Subjects:
Online Access:https://hdl.handle.net/11250/2779745
https://doi.org/10.3390/v12121450
Description
Summary:Here we have studied the impact of lice (Lepeophtheirus salmonis) infestation of donor fish on the ability of isolated peripheral blood monocytes (PBMCs) to control the replication of salmonid alphavirus (SAV) ex vivo. PBMCs were collected by Percoll gradients at eight and nine weeks post copepodid infestation of Atlantic salmon post smolt. Uninfested fish were controls. PBMCs were then infected ex vivo with SAV (subtype 3), and samples were collected for analysis at two, four, and six days post virus infection. Virus titer in the supernatant was assayed in CHH-1 cells, and in addition, the relative expression of the virus structural protein E2 and selected host antiviral genes, IRF9, ISG15, Mx, and IFIT5, were assayed using real-time PCR. Significantly higher virus replication was detected in cells collected from lice-infested fish compared to controls. Higher virus titer coincided with an inability to upregulate the expression of different immune genes, IFIT5, IRF9, and Mx. These findings point towards compromised ability of PBMCs from lice-infested fish to control virus replication, and, to our knowledge, is the first report showing the direct effect of lice infestation on the interplay between viruses and immune cells. There is a possible impact on the dynamic spread of viral diseases in the aquatic environment. publishedVersion