The effect of the pool and riffle on transport in rivers

One-dimensional steady flow pollutant transport models assume that the river reach modelled has a uniform cross-sectional shape which manifests as a constant average velocity in the model equations. Rarely do rivers meet this criterion. Their channels are seldom uniform in shape, but rather alternat...

Full description

Bibliographic Details
Main Author: Halket, Ian
Other Authors: Rasmussen, Peter (Civil Engineering) Doering, Jay (Civil Engineering), Cicek, Nazim (Biosystems Engineering) Lobb, David (Soil Science) Steffler, Peter (Water Resources Engineering, University of Alberta)
Format: Doctoral or Postdoctoral Thesis
Language:English
Published: 2010
Subjects:
Online Access:http://hdl.handle.net/1993/4044
Description
Summary:One-dimensional steady flow pollutant transport models assume that the river reach modelled has a uniform cross-sectional shape which manifests as a constant average velocity in the model equations. Rarely do rivers meet this criterion. Their channels are seldom uniform in shape, but rather alternate in a quasi-periodic manner between pool and riffle sections. This bedform sequencing imparts a corresponding variation in the average cross-sectional velocity which is not accounted for in constant velocity transport models. The literature points out that the pool and riffle planform may be the reason for the sometimes poor predictions obtained from these models. This thesis confirms that the fluctuation in average cross-sectional velocity caused by the pool and riffle planform does have a marked effect on transport in rivers. The pool and riffle planform promotes an enhanced decay of a pollutant when a first order biochemical reaction is simulated. This effect becomes more pronounced as flow declines. The reason for this is that travel time in a pool and riffle channel is greater than for a uniformly shaped channel. Current one-dimensional models assume a uniform channel and therefore overestimate the velocity of a substance moving downstream. To show this an equation is developed that describes the variation in average cross-sectional velocity along a pool and riffle channel. The parameters of the equation can be easily evaluated for any river. The equation is incorporated into a mass balance analysis and a new form of the river transport model is derived. Analysis shows that the transport of a substance in a pool and riffle channel is governed by travel velocity which is different from the average cross-sectional velocity used in the traditional advection model. Replacing average velocity with travel velocity provides a simple fix for the traditional model. The new transport model is tested on the Athabasca River with excellent results. The variable velocity model successfully simulates the DO dynamics on a 550 ...