Narwhal (Monodon monoceros) diet and dive behaviour as an assessment of foraging adaptability with changing climate

Narwhals (Monodon monoceros) are sentinel species in the Arctic environment and are a vital component for Inuit culture and subsistence. The Arctic is undergoing rapid changes in temperature and sea ice cover and relatively little is known about how this has and will change narwhal foraging behaviou...

Full description

Bibliographic Details
Published in:Marine Mammal Science
Main Author: Watt, Cortney
Other Authors: Ferguson, Steve (Biological Sciences), Roth, Jim (Biological Sciences) Manseau, Micheline (Natural Resources Institute) Brigham, Mark (Biology, University of Regina)
Format: Doctoral or Postdoctoral Thesis
Language:English
Published: Ecosphere 2014
Subjects:
Online Access:http://hdl.handle.net/1993/30138
Description
Summary:Narwhals (Monodon monoceros) are sentinel species in the Arctic environment and are a vital component for Inuit culture and subsistence. The Arctic is undergoing rapid changes in temperature and sea ice cover and relatively little is known about how this has and will change narwhal foraging behaviour. There are three narwhal populations in the world, the Baffin Bay (BB), Northern Hudson Bay (NHB), and East Greenland (EG) populations; however, foraging behaviour, in terms of dive behaviour and primary dietary components, has really only been investigated in the BB population. Using a combination of stable isotopes, fatty acids, genetic techniques, and satellite tracking technologies I evaluated foraging behaviour in all three of the world’s narwhal populations. I also investigated social structure in the BB population to determine how adaptable narwhals are to a changing and dynamic Arctic environment. Stable isotopes (δ13C and δ15N) and fatty acids are chemical signatures in the tissues of an organism that can provide long-term information on their diet over varying temporal scales depending upon the tissue. Stable isotope analysis in the three narwhal populations found they forage on different primary prey, suggesting narwhal are adaptable in their preferred prey and that there is potential for them to adjust foraging behavior in the face of changing climate. Dietary changes were also assessed over three decades to determine how sea ice changes have affected narwhal foraging for the NHB and BB populations. Dietary changes were evident and can be attributed to changes in sea ice patterns and an altered migratory pathway for narwhals. An understanding of narwhal social structure is also needed to determine how behaviourally flexible narwhal are in diet and site fidelity. Genetic relatedness and dietary signatures from fatty acids were assessed for an entrapped group to determine if individuals that are closely related forage together, which would support a matrilineally driven social structure where females teach ...