Supernova detection in a future extension of the IceCube neutrino telescope

Marking the final explosive burning stage of massive stars, supernovae are onernthe of most energetic celestial events. Apart from their enormous optical brightnessrnthey are also known to be associated with strong emission of MeV neutrinos—up tornnow the only proven source of extrasolar neutrinos.r...

Full description

Bibliographic Details
Main Author: Schulte, Lukas
Format: Master Thesis
Language:English
Published: Johannes Gutenberg-Universität Mainz 2011
Subjects:
Online Access:https://openscience.ub.uni-mainz.de/handle/20.500.12030/3127
https://hdl.handle.net/20.500.12030/3127
https://doi.org/10.25358/openscience-3125
Description
Summary:Marking the final explosive burning stage of massive stars, supernovae are onernthe of most energetic celestial events. Apart from their enormous optical brightnessrnthey are also known to be associated with strong emission of MeV neutrinos—up tornnow the only proven source of extrasolar neutrinos.rnAlthough being designed for the detection of high energy neutrinos, the recentlyrncompleted IceCube neutrino telescope in the antarctic ice will have the highestrnsensitivity of all current experiments to measure the shape of the neutrino lightrncurve, which is in the MeV range. This measurement is crucial for the understandingrnof supernova dynamics.rnIn this thesis, the development of a Monte Carlo simulation for a future low energyrnextension of IceCube, called PINGU, is described that investigates the response ofrnPINGU to a supernova. Using this simulation, various detector configurations arernanalysed and optimised for supernova detection. The prospects of extracting notrnonly the total light curve, but also the direction of the supernova and the meanrnneutrino energy from the data are discussed. Finally the performance of PINGU isrncompared to the current capabilities of IceCube. Supernovae, die letzte, explosive Brennphase massereicher Sterne, stellen einesrnder energiereichsten Ereignisse dar, die man im Universum beobachten kann. Nebenrnihrer enormen Leuchtkraft sind sie bekanntermaßen auch mit einer starken Emissionrnvon Neutrinos im MeV-Bereich verbunden – und bislang die einzige nachgewiesenernNeutrinoquelle außerhalb des Sonnensystems.rnObwohl es für den Nachweis hochenergetischer Neutrinos ausgelegt ist, weist dasrnkürzlich fertig gestellte Neutrinoteleskop IceCube im antarktischen Eis im Fall einerrngalaktischen Supernova die höchste Sensitivität aller derzeit laufenden Experimen-rnte für ihre Neutrino-Lichtkurve auf, die im MeV-Bereich liegt. Deren Kenntnis istrnentscheidend für das Verständnis der Dynamik von Supernovae.rnIn dieser Arbeit wird die Entwicklung einer Monte-Carlo-Simulation für ...