Spatiotemporal variability of elemental and organic carbon in Svalbard snow during 2007–2018
International audience Light-absorbing carbonaceous aerosols emitted by biomass or fossil fuel combustion can contribute to amplify Arctic climate warming by lowering the albedo of snow. The Svalbard archipelago, being near to Europe and Russia, is particularly affected by these pollutants, and impr...
Main Authors: | , , , , , , , , , , , , |
---|---|
Other Authors: | , , , , , , , , , , , , , , , , , |
Format: | Article in Journal/Newspaper |
Language: | English |
Published: |
HAL CCSD
2021
|
Subjects: | |
Online Access: | https://hal.science/hal-03080141 https://hal.science/hal-03080141/document https://hal.science/hal-03080141/file/acp-2020-491.pdf https://doi.org/10.5194/acp-2020-491 |
Summary: | International audience Light-absorbing carbonaceous aerosols emitted by biomass or fossil fuel combustion can contribute to amplify Arctic climate warming by lowering the albedo of snow. The Svalbard archipelago, being near to Europe and Russia, is particularly affected by these pollutants, and improved knowledge of their distribution in snow is needed to assess their impact. Here we present and synthesize new data obtained on Svalbard between 2007 and 2018, comprising 324 measurements of elemental (EC) and organic carbon (OC) in snow from 49 sites. We used these data, combined with meteorological and aerosol data and snowpack modelling, to investigate the variability of EC and OC deposition in Svalbard snow across latitude, longitude, elevation and time. Overall, EC concentrations (CsnowEC) ranged from |
---|