On the origin of noble gases in mantle plumes

cited By 24 International audience The chemical differences between deep- and shallow-mantle sources of oceanic basalts provide evidence that several distinct components coexist within the Earth's mantle. Most of these components have been identified as recycled in origin. However, the noble-ga...

Full description

Bibliographic Details
Main Authors: Coltice, N., Ricard, Y.
Other Authors: Laboratoire de Sciences de la Terre (LST), École normale supérieure de Lyon (ENS de Lyon)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)
Format: Article in Journal/Newspaper
Language:English
Published: HAL CCSD 2002
Subjects:
Online Access:https://hal.science/hal-02046733
Description
Summary:cited By 24 International audience The chemical differences between deep- and shallow-mantle sources of oceanic basalts provide evidence that several distinct components coexist within the Earth's mantle. Most of these components have been identified as recycled in origin. However, the noble-gas signature is still a matter of debate and questions the preservation of primitive regions in the convective mantle. We show that a model where the noble-gas signature observed in Hawaii and Iceland comes from a pristine homogeneous deep layer would imply a primitive 3He content and 3He/22Ne ratio that are very unlikely. On the contrary, mass balances show that the partly degassed peridotite of a marble-cake mantle can be the noble-gas end-member with an apparent 'primitive'-like composition. This component is mixed with recycled oceanic crust in different proportions in the plume sources and in the shallow mantle. A recycling model of the mantle, involving gravitational segregation of the oceanic crust at the bottom of the mantle, potentially satisfies trace-element as well as noble-gas constraints.