Present-Day Land and Sea Level Changes around South Georgia Island: Results from Precise Levelling, GNSS, Tide Gauge and Satellite Altimetry Measurements

South Georgia Island, the main land outcrop on the South Georgia microcontinent (SGM), is located approximately 1,400 km east of the Falkland Islands and approximately 1,400 km northeast of the northernmost tip of the Antarctic peninsular. The SGM is believed to lie south of the North Scotia Ridge (...

Full description

Bibliographic Details
Main Authors: Teferle, Felix Norman, Dalziel, I W D, Hunegnaw, Addisu, Hibbert, Angela, Williams, Simon D. P., Woodworth, Philip L., Smalley, Robert Jr., Lawver
Format: Conference Object
Language:English
Published: 2019
Subjects:
Online Access:https://orbilu.uni.lu/handle/10993/39978
https://orbilu.uni.lu/bitstream/10993/39978/1/Teferleetal_ISAES2019.pdf
Description
Summary:South Georgia Island, the main land outcrop on the South Georgia microcontinent (SGM), is located approximately 1,400 km east of the Falkland Islands and approximately 1,400 km northeast of the northernmost tip of the Antarctic peninsular. The SGM is believed to lie south of the North Scotia Ridge (NSR), which forms the boundary to the South America Plate, while to the south it is bordered by the Scotia Plate (SP). In its sub-Antarctic location, the island is largely covered by mountain glaciers which have been reported to be retreating due to climatic change. Furthermore, during past glaciation periods the island and its shelf area, stretching much of the SGM, have been ice covered as was revealed by scarring of the sub-oceanic topography. Together with ongoing tectonics along the NSR and recent seismicity at the SP boundary, these processes have the ability to produce significant uplift on local to regional scales. With its mid-ocean location in the Southern Atlantic Ocean South Georgia Island is in a key position for the oceanic and geodetic global monitoring networks. As these net-works suffer from a Hemisphere imbalance with the number of stations in the Northern Hemisphere outnumbering those in the Southern Hemisphere, operating these stations to the highest standards is of key scientific value. It is of particular interest to monitor the tide gauge (GLOSS ID 187) at King Edward Point (KEP) for vertical land movements to establish a continuous record of its datum within the Permanent Service for Mean Sea Level (PSMSL), which in turn makes it useful for long-term sea level studies and satellite altimetry calibrations. With the establishment of five GNSS stations on the islands by teams from Luxembourg, the UK and the USA during 2013 to 2015, and the scientific analysis of these data within a global network of stations, it has now become possible to study present-day vertical land movements and their impacts. Furthermore, together with four precise levelling campaigns of the KEP benchmark network in 2013, ...