An optimized short-arc approach: methodology and application to develop refined time series of Tongji-Grace2018 GRACE monthly solutions

peer reviewed Abstract Considering the unstable inversion of ill-conditioned intermediate matrix required in each integral arc in the short-arc approach presented in Chen et al. (2015), an optimized short-arc method via stabilizing the inversion is proposed. To account for frequency-dependent noise...

Full description

Bibliographic Details
Published in:Journal of Geophysical Research: Solid Earth
Main Authors: Chen, Qiujie, Shen, Yunzhong, Chen, Wu, Francis, Olivier, Zhang, Xingfu, Chen, Qiang, Li, Weiwei, Chen, Tianyi
Format: Article in Journal/Newspaper
Language:English
Published: Wiley 2019
Subjects:
Online Access:https://orbilu.uni.lu/handle/10993/39560
https://orbilu.uni.lu/bitstream/10993/39560/1/16491632.pdf
https://doi.org/10.1029/2018JB016596
Description
Summary:peer reviewed Abstract Considering the unstable inversion of ill-conditioned intermediate matrix required in each integral arc in the short-arc approach presented in Chen et al. (2015), an optimized short-arc method via stabilizing the inversion is proposed. To account for frequency-dependent noise in observations, a noise whitening technique is implemented in the optimized short-arc approach. Our study shows the optimized short-arc method is able to stabilize the inversion and eventually prolong the arc length to 6 hours. In addition, the noise whitening method is able to mitigate the impacts of low-frequency noise in observations. Using the optimized short-arc approach, a refined time series of GRACE monthly models called Tongji-Grace2018 has been developed. The analyses allow us to derive the following conclusions: (a) during the analyses over the river basins (i.e. Amazon, Mississippi, Irrawaddy and Taz) and Greenland, the correlation coefficients of mass changes between Tongji-Grace2018 and others (i.e. CSR RL06, GFZ RL06 and JPL RL06 Mascon) are all over 92 and the corresponding amplitudes are comparable; (b) the signals of Tongji-Grace2018 agree well with those of CSR RL06, GFZ RL06, ITSG-Grace2018 and JPL RL06 Mascon, while Tongji-Grace2018 and ITSG-Grace2018 are less noisy than CSR RL06 and GFZ RL06; (c) clearer global mass change trend and less striping noise over oceans can be observed in Tongji-Grace2018 even only using decorrelation filtering; and (d) for the tests over Sahara, over 36 and 19 of noise reductions are achieved by Tongji-Grace2018 relative to CSR RL06 in the cases of using decorrelation filtering and combined filtering, respectively.