The sources of Antarctic bottom water in a global ice–ocean model

Two mechanisms contribute to the formation of Antarctic bottom water (AABW). The first, and probably the most important, is initiated by the brine released on the Antarctic continental shelf during ice formation which is responsible for an increase in salinity. After mixing with ambient water at the...

Full description

Bibliographic Details
Published in:Ocean Modelling
Main Authors: Goosse, Hugues, Campin, J.M., Tartinville, B.
Other Authors: UCL - SST/ELI/ELIC - Earth & Climate
Format: Article in Journal/Newspaper
Language:English
Published: Elsevier Inc. 2001
Subjects:
Online Access:http://hdl.handle.net/2078.1/129568
https://doi.org/10.1016/S1463-5003(00)00017-2
Description
Summary:Two mechanisms contribute to the formation of Antarctic bottom water (AABW). The first, and probably the most important, is initiated by the brine released on the Antarctic continental shelf during ice formation which is responsible for an increase in salinity. After mixing with ambient water at the shelf break, this salty and dense water sinks along the shelf slope and invades the deepest part of the global ocean. For the second one, the increase of surface water density is due to strong cooling at the ocean–atmosphere interface, together with a contribution from brine release. This induces deep convection and the renewal of deep waters. The relative importance of these two mechanisms is investigated in a global coupled ice–ocean model. Chlorofluorocarbon (CFC) concentrations simulated by the model compare favourably with observations, suggesting a reasonable deep water ventilation in the Southern Ocean, except close to Antarctica where concentrations are too high. Two artificial passive tracers released at surface on the Antarctic continental shelf and in the open-ocean allow to show clearly that the two mechanisms contribute significantly to the renewal of AABW in the model. This indicates that open-ocean convection is overestimated in our simulation. Additional experiments show that the amount of AABW production due to the export of dense shelf waters is quite sensitive to the parameterisation of the effect of downsloping and meso-scale eddies. Nevertheless, shelf waters always contribute significantly to deep water renewal. Besides, increasing the P.R. Gent, J.C. McWilliams [Journal of Physical Oceanography 20 (1990) 150–155] thickness diffusion can nearly suppress the AABW formation by open-ocean convection.