Enzymatic production of ecodiesel by using a commercial lipase CALB, immobilized by physical adsorption on mesoporous organosilica materials

The synthesis of two biocatalysts based on a commercial Candida antarctica lipase B, CALB enzyme (E), physically immobilized on two silica supports, was carried out. The first support was a periodic mesoporous organosilica (PMO) and the second one was a commercial silica modified with octyl groups (...

Full description

Bibliographic Details
Main Authors: Carlos Luna, Victoria Gascón-Pérez, Francisco J. López-Tenllado, Felipa M. Bautista, Cristóbal Verdugo-Escamilla, Laura Aguado-Deblas, Juan Calero, Antonio A. Romero, Diego Luna, Rafael Estévez
Format: Other Non-Article Part of Journal/Newspaper
Language:unknown
Published: 2021
Subjects:
Online Access:https://figshare.com/articles/journal_contribution/Enzymatic_production_of_ecodiesel_by_using_a_commercial_lipase_CALB_immobilized_by_physical_adsorption_on_mesoporous_organosilica_materials/19883938
Description
Summary:The synthesis of two biocatalysts based on a commercial Candida antarctica lipase B, CALB enzyme (E), physically immobilized on two silica supports, was carried out. The first support was a periodic mesoporous organosilica (PMO) and the second one was a commercial silica modified with octyl groups (octyl-MS3030). The maximum enzyme load was 122 mg enzyme/g support on PMO and 288 mg enzyme/g support on octyl-MS3030. In addition, the biocatalytic efficiency was corroborated by two reaction tests based on the hydrolysis of p-nitrophenylacetate (p-NPA) and tributyrin (TB). The transesterification of sunflower oil with ethanol was carried out over the biocatalysts synthesized at the following reaction conditions: 6 mL sunflower oil, 1.75 mL EtOH, 30 ◦C, 25 µL NaOH 10 N and 300 rpm, attaining conversion values over 80% after 3 h of reaction time. According to the results obtained, we can confirm that these biocatalytic systems are viable candidates to develop, optimize and improve a new methodology to achieve the integration of glycerol in different monoacylglycerol molecules together with fatty acid ethyl esters (FAEE) molecules to obtain Ecodiesel.