Thermal infrared dust optical depth and coarse-mode effective diameter over oceans retrieved from collocated MODIS and CALIOP observations

In this study, we developed a novel algorithm based on the collocated Moderate Resolution Imaging Spectroradiometer (MODIS) thermal infrared (TIR) observations and dust vertical profiles from the Cloud–Aerosol Lidar with Orthogonal Polarization (CALIOP) to simultaneously retrieve dust aerosol optica...

Full description

Bibliographic Details
Main Authors: Zheng, Jianyu, Zhang, Zhibo, Yu, Hongbin, Garnier, Anne, Song, Qianqian, Wang, Chenxi, Di Biagio, Claudia, Kok, Jasper F., Derimian, Yevgeny, Ryder, Claire
Other Authors: Université de Lille, CNRS, University of Maryland Baltimore, Department of Physics Baltimore, NASA Goddard Space Flight Center GSFC, NASA Langley Research Center Hampton LaRC, Université Paris Cité UPCité, Department of Atmospheric and Oceanic Sciences Los Angeles AOS, Laboratoire d'Optique Atmosphérique (LOA) - UMR 8518, Department of Meteorology Reading
Format: Article in Journal/Newspaper
Language:English
Published: 2024
Subjects:
Online Access:https://hdl.handle.net/20.500.12210/114143
Description
Summary:In this study, we developed a novel algorithm based on the collocated Moderate Resolution Imaging Spectroradiometer (MODIS) thermal infrared (TIR) observations and dust vertical profiles from the Cloud–Aerosol Lidar with Orthogonal Polarization (CALIOP) to simultaneously retrieve dust aerosol optical depth at 10 µm (DAOD10 µm) and the coarse-mode dust effective diameter (Deff) over global oceans. The accuracy of the Deff retrieval is assessed by comparing the dust lognormal volume particle size distribution (PSD) corresponding to retrieved Deff with the in situ-measured dust PSDs from the AERosol Properties – Dust (AER-D), Saharan Mineral Dust Experiment (SAMUM-2), and Saharan Aerosol Long-Range Transport and Aerosol–Cloud-Interaction Experiment (SALTRACE) field campaigns through case studies. The new DAOD10 µm retrievals were evaluated first through comparisons with the collocated DAOD10.6 µm retrieved from the combined Imaging Infrared Radiometer (IIR) and CALIOP observations from our previous study (Zheng et al., 2022). The pixel-to-pixel comparison of the two DAOD retrievals indicates a good agreement (R∼0.7) and a significant reduction in (∼50 %) retrieval uncertainties largely thanks to the better constraint on dust size. In a climatological comparison, the seasonal and regional ( ) mean DAOD10 µm retrievals based on our combined MODIS and CALIOP method are in good agreement with the two independent Infrared Atmospheric Sounding Interferometer (IASI) products over three dust transport regions (i.e., North Atlantic (NA; R=0.9), Indian Ocean (IO; R=0.8) and North Pacific (NP; R=0.7)). Using the new retrievals from 2013 to 2017, we performed a climatological analysis of coarse-mode dust Deff over global oceans. We found that dust Deff over IO and NP is up to 20 % smaller than that over NA. Over NA in summer, we found a ∼50 % reduction in the number of retrievals with Deff>5 µm from 15 to 35∘ W and a stable trend of Deff average at 4.4 µm from 35∘ W throughout the Caribbean Sea (90∘ W). Over NP in spring, ...