Black Carbon Aerosol in the Arctic: Ageing, Transport and Radiative Effects

Der anthropogene Klimaeinfluss hat zu global steigenden Temperaturen geführt. In der sich verändernden Arktis ist diese Erwärmung im Vergleich zum globalen Mittel verstärkt. Schwarzer Kohlenstoff (Black Carbon, BC) ist ein Aerosoltyp, der von besonderem Interesse ist, da er die Sonnenstrahlung beson...

Full description

Bibliographic Details
Main Author: Schacht, Jacob
Other Authors: Universität Leipzig
Format: Doctoral or Postdoctoral Thesis
Language:English
Published: 2020
Subjects:
Online Access:https://nbn-resolving.org/urn:nbn:de:bsz:15-qucosa2-759652
https://ul.qucosa.de/id/qucosa%3A75965
https://ul.qucosa.de/api/qucosa%3A75965/attachment/ATT-0/
Description
Summary:Der anthropogene Klimaeinfluss hat zu global steigenden Temperaturen geführt. In der sich verändernden Arktis ist diese Erwärmung im Vergleich zum globalen Mittel verstärkt. Schwarzer Kohlenstoff (Black Carbon, BC) ist ein Aerosoltyp, der von besonderem Interesse ist, da er die Sonnenstrahlung besonders effizient absorbiert und dadurch zur Erwärmung der Atmosphäre beiträgt. BC entsteht bei unvollständiger Verbrennung fossiler Brennstoffe und bei Vegetationsbränden. Dies beinhaltet fossile Brennstoffe und Biomasse, etwa bei Vegetationsbränden. Ziel dieser Arbeit ist die Untersuchung der Quellen und des Transports von BC in die Arktis mittels globaler Modellierung und eine aktuelle Abschätzung dessen Wirkung auf den Strahlungshaushalt der Arktis. Hierzu wird das globale Aerosol-Klimamodell ECHAM-HAM verwendet. Eine umfassende Evaluierung des Models unter Verwendung von Beobachtungen der BC-Konzentrationen in der Arktis zeigt, dass BC vom Modell im allgemeinen realistisch reproduziert, in der oberen Troposphäre der Arktis jedoch überschätzt wird. Die häufigsten Unsicherheiten globaler Aerosol-Klimamodelle werden mit Sensitivitätsstudien angegangen: Der Unsicherheitsbereich der aus Annahmen über die BC-Quellen resultiert, wird durch eine Gegenüberstellung verschiedener Emmisionskonfigurationen quantifiziert. Zusätzlich werden die Unsicherheiten aufgrund der Parametrisierung der Nassdeposition abgeschätzt. Tagesaktuelle, satellitengestützte Emissionen von Vegetationsbränden sind entscheidend um die vertikale Verteilung von arktischem BC zu reproduzieren. Außerdem ermöglichen diese Emissionsdaten bessere zeitliche Korrelationen zwischen Beobachtungen und Modell. Eine neue Modellkonfiguration mit langsamerer Alterung und effizienterer Auswaschung von Aerosolen in Wolken führt zu einer realistischeren BC-Verteilung in der oberen arktischen Troposphäre. Der direkte Strahlungseffekt (DRE) des atmosphärischen BC in der Arktis >60°N beläuft sich auf einen Nettoenergiegewinn (solar und thermisch) am Oberrand der ...