Are biochemical biomarker responses related to physiological performance of juvenile sea bass (Dicentrarchus labrax) and turbot (Scophthalmus maximus) caged in a polluted harbour?

International audience Biomarker responses to toxic exposure have been used for decades to indicate stress in aquatic organisms, or the magnitude of environmental pollution. However, little has been done to compare the simultaneous responses of both biochemical and physiological biomarkers. The purp...

Full description

Bibliographic Details
Main Authors: Kerambrun, E., Sanchez, W., Henry, Françoise, Amara, Rachid
Other Authors: Laboratoire d’Océanologie et de Géosciences (LOG) - UMR 8187 (LOG), Institut national des sciences de l'Univers (INSU - CNRS)-Université du Littoral Côte d'Opale (ULCO)-Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD France-Nord ), Université du Littoral Côte d'Opale (ULCO), Laboratoire d'études spatiales et d'instrumentation en astrophysique (LESIA), Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, Université Paris Sciences et Lettres (PSL)-Université Paris Sciences et Lettres (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)
Format: Article in Journal/Newspaper
Language:English
Published: HAL CCSD 2011
Subjects:
Online Access:https://hal.science/hal-00758747
Description
Summary:International audience Biomarker responses to toxic exposure have been used for decades to indicate stress in aquatic organisms, or the magnitude of environmental pollution. However, little has been done to compare the simultaneous responses of both biochemical and physiological biomarkers. The purpose of this study was twofold. Firstly to analyse the responses of several biochemical biomarkers measured on juvenile sea bass and turbot caged in a northern France harbour at a reference and contaminated stations. Several biotransformation parameters (Ethoxyresorufin-O-deethylase - EROD - and Glutathione S-transferase -GST) and an antioxidant enzyme (Catalase -CAT) were analysed. Secondly, to compare their responses to several growth and condition indices, measured on the same fish. In the contaminated station, EROD and GST activities were found to be significantly higher, and a decrease of CAT activity was observed for both species. For individual sea bass, biochemical biomarkers showed numerous significant correlations with growth and condition indices, such as the Fulton's K condition index, the RNA:DNA ratio and the lipid storage index. On the contrary, there were only a few significant correlations for turbot, suggesting a species-specific response. Our study indicates that the analysis of the simultaneous responses of both biochemical and physiological biomarkers can be useful for monitoring complex exposure and to assess habitat quality.