Do coastal fronts influence bioerosion patterns along Patagonia? Late Quaternary ichnological tools from Golfo San Jorge

Late Quaternary marine molluscan skeletal concentrations from Argentina constitute a remarkable record of variations in palaeoceanographical conditions during interglacial times (mainly ca. 125 ka to present). Particularly, the Golfo San Jorge coastal area represents an extraordinary geographical zo...

Full description

Bibliographic Details
Main Authors: Richiano, Sebastián Miguel, Aguirre, Marina Laura, Castellanos, Ignacio, Davies, Karen, Farinati, Ester
Format: Article in Journal/Newspaper
Language:English
Published: 2017
Subjects:
Online Access:http://sedici.unlp.edu.ar/handle/10915/118356
Description
Summary:Late Quaternary marine molluscan skeletal concentrations from Argentina constitute a remarkable record of variations in palaeoceanographical conditions during interglacial times (mainly ca. 125 ka to present). Particularly, the Golfo San Jorge coastal area represents an extraordinary geographical zone to target from different points of view, mainly due to its linkage between northern and southern Patagonia, characterized by particular and contrasting physico-chemical conditions with direct consequences for littoral marine communities, determining their composition and structure. Among varied biological activities controlled by different environmental factors (i.e., substrate nature, sedimentation rates, water depth, sea surface temperature, salinity, nutrients-productivity), bioerosion traces can provide palaeoenvironmental evidence with important implications for palaeoclimate interpretations. In addition, the application of bioerosion patterns regionally and through time is a recent valuable worthy palaeoenvironmental tool not as yet developed for Patagonia. We attempted to characterize, qualitatively/semiquantitatively, the ichnotaxonomic composition of the coastal area of northern Golfo San Jorge since the Late Pleistocene; to compare results with those obtained for other geographical areas along Patagonia and the Bonaerensian coastal sectors; lastly, to evaluate its palaeoenvironmental/palaeoclimatic significance in a clue area in terms of circulation patterns near the Southern Ocean climatic pump. At Bustamante (Northern Patagonia Frontal System) Domichnia traces were dominant during the Late Pleistocene while Praedichnia in the mid-Holocene. Bustamante exhibits the highest ichnodiversity for the whole Argentinean coastal area. Ichnodiversity is not strongly different between Late Pleistocene and mid-Holocene interglacials and compared to present; however, the relative abundance of some ichnotaxa (e.g., Oichnus, Iramena, Pennatichnus, at Camarones; Oichnus, Iramena, Pinaceocladichnus, at Bustamante) differs across time. These variations, particularly the highest abundance in the Late Pleistocene (mainly Last Interglacial) of traces made by bryozoans- associated at present with modern enhanced productivity levels and coastal fronts in the Argentine continental shelf- point to higher productivity and more intensified northern Patagonia Front, as a result of a different palaeocirculation pattern, reinforcing previous independent sources of evidence based on molluscan palaeobiogeographical analyses. Facultad de Ciencias Naturales y Museo