The influence of marine phytoplankton on iodine speciation in the Tropical and Southern Atlantic Ocean

The role of halogene species like iodine in the ocean and how their speciation is affected by marine organisms is not well known. This lack of knowledge demands for more detailed field as well as experimental studies in order to unravel the role of iodine in marine ecosystems. My thesis comprises fi...

Full description

Bibliographic Details
Main Author: Bluhm, Katrin
Other Authors: Lochte, Karin, Wallace, Douglas W.R.
Format: Doctoral or Postdoctoral Thesis
Language:English
Published: 2009
Subjects:
Online Access:https://nbn-resolving.org/urn:nbn:de:gbv:8-diss-47749
https://macau.uni-kiel.de/receive/diss_mods_00004774
https://macau.uni-kiel.de/servlets/MCRFileNodeServlet/dissertation_derivate_00003101/kbluhmdiss.pdf
Description
Summary:The role of halogene species like iodine in the ocean and how their speciation is affected by marine organisms is not well known. This lack of knowledge demands for more detailed field as well as experimental studies in order to unravel the role of iodine in marine ecosystems. My thesis comprises field work on the iodine speciation in polar and tropical marine environments complemented by a set of laboratory experiments on the role of phytoplankton species from the two regions studied for the iodine biogeochemical cycle. A large scale survey across the Atlantic sector of the Southern Ocean and three cruises to the Mauritanian upwelling region during both strong and weak upwelling seasons provide valuable information on iodine speciation over large spatial scales in case of the former survey, and on seasonal variability in case of the latter cruises. Furthermore, comparison of these two oceanic provinces will allow to decipher differences and conformities in iodine speciation between areas as far apart as the Southern Ocean and the Mauritanian upwelling region. In both provinces the total iodine (iodate + iodide) concentrations were in the same range between 450-480nmol L-1, while surface iodide values in the euphotic zone varied considerably and showed a steep vertical concentration gradient of less than 20nmol L-1 for antarctic and over 200nmol L-1 for tropical waters. In seawater the interconversion of the two inorganic forms of iodine, iodate and iodide, can be mediated by abiotic and/or biotic processes. The accumulation of iodide in the euphotic zone in both regions is suggested to be a more biologically mediated process and as observed in the experimental studies phytoplankton cells do influence the iodate reduction to iodide. However, highest iodide concentrations were not coupled to highest biological productivity instead we observed highest iodide values during post bloom periods in the respective regions indicating a strong relationship between iodide production and phytoplankton senescence during ...