The diversity and interactions of fungi from the Paleozoic and Mesozoic of Antarctica

Fungi are ubiquitous in all ecosystems and are the driving force in many types of interactions, such as mutualists, saprotrophs, parasites, and necrotrophs. Fungi are equally as integral in extant ecosystems as they certainly were in paleoecosystems. Paleomycology, the study of fossil fungi, is an e...

Full description

Bibliographic Details
Main Author: Harper, Carla Jane
Other Authors: Taylor, Thomas N, Crawford, Daniel J, Hasiotis, Stephen T, Lichtwardt, Robert W, Olcott Marshall, Alison, Taylor, Edith L
Format: Doctoral or Postdoctoral Thesis
Language:English
Published: University of Kansas 2015
Subjects:
Online Access:http://hdl.handle.net/1808/19040
http://dissertations.umi.com/ku:14012
Description
Summary:Fungi are ubiquitous in all ecosystems and are the driving force in many types of interactions, such as mutualists, saprotrophs, parasites, and necrotrophs. Fungi are equally as integral in extant ecosystems as they certainly were in paleoecosystems. Paleomycology, the study of fossil fungi, is an emerging field of paleontology. Most fossil fungi are found in or in close association with plants and thus, paleomycology is also considered a sub-discipline of paleobotany. Therefore when plants are well preserved there is the increase potential to examine their fungal associates. Permineralized material is a preservation type that offers the opportunity to study plants, fungi, and other microorganisms anatomically and morphologically. Prior research suggested that fungi were too fragile and delicate to be structurally preserved in the fossil record; however, fungi have been described in some early paleobotanical studies as dispersed fragments, spores, and other remnants. The taxonomic and ecological affinities of many of these fungi, however, were not described in great detail. The objective of this study is to investigate the fungal components and plant-fungal associations of the Permian, Triassic, and Jurassic of Antarctica. The Paleobotanical Collections at the University of Kansas (KU) house the largest collection of Antarctic permineralized peat deposits in the world. To date, the majority of reports on Antarctic fossil fungi are found in Triassic peat material, with fewer reports on Permian fungi, and are most sparse on Jurassic fungi. These contributions utilized the acetate peel technique, a traditional method of studying permineralized material in paleobotany, and provided a platform for the investigation of microorganisms in ancient Antarctic environments. It has been demonstrated that paleontological thin sections of permineralized peat yields more information on fossil microbes because the fine details of the microorganisms are not etched away as they would be in the acetate peel technique. This study ...