Development of a Seismic Snow Streamer and Use of Multi-Offset Reflection for Determining Glacier Ice Properties

Glaciers and ice sheets are important to climate research due to their role in controlling worldwide weather and temperature patterns as well as their potential impact in sea level rise. Because of this, scientists are attempting to model large ice sheets and important fast flowing glaciers. These m...

Full description

Bibliographic Details
Main Author: Velez Gonzalez, Jose Antonio
Other Authors: Tsoflias, George, Black, Ross, Van der Veen, Kees
Format: Thesis
Language:English
Published: University of Kansas 2012
Subjects:
Online Access:http://hdl.handle.net/1808/10858
http://dissertations.umi.com/ku:12556
Description
Summary:Glaciers and ice sheets are important to climate research due to their role in controlling worldwide weather and temperature patterns as well as their potential impact in sea level rise. Because of this, scientists are attempting to model large ice sheets and important fast flowing glaciers. These models are limited in large part to the lack of data which govern the nonlinear behavior of ice flow. Seismic data acquisition can provide high resolution data which can be used to extract information of variables like bed topography, ice temperature and preferred ice crystal orientation. But seismic data acquisition in polar environments is challenging. This is mainly due to the labor intensive process of manually hand planting geophones. In order to improve the efficiency of active source seismic reflection data acquisition in polar environments, two prototype seismic snow-streamers were constructed for this investigation and optimized for deployment in remote locations. The first snow-streamer (experimental snow-streamer) was field tested in the Jakobshavn Glacier located in central western Greenland. The experimental snow-streamer was equipped with multiple geophone configurations and two plate materials. Twenty-two variable angle records were collected using the stationary snow streamer in the center of the survey. The source consisted of 0.5 kg of explosives buried 10 m below the snow surface at 160 m intervals. The resultant data set consisted of offsets ranging from -1760 to +1600 m and the ice-bed interface as well as two internal ice layers were imaged at approximately 1.85, 1.5 and 1.7 km depth respectively. The snow-streamer data was simultaneously collected with a mirror arrangement of hand planted buried geophones in order to test for the effects of plate weight, wind noise, geophone burial and plate to snow coupling in the seismic signal. The signal analysis and the comparison of streamer vs. buried geophones showed that geophone burial can degrade the seismic signal while the wind and signal analysis ...