Investigation of the Nonlinear Tribological Behaviour of Mechanical Seals for Online Condition Monitoring
Mechanical seals have increasingly been used for sealing rotating shafts in centrifugal pumps, propeller shafts in ships and submarines, compressors, liquid propellant rocket motors in aerospace industry, pumps, turbines, mixers and many other rotating machines during last two decades. Abnormal oper...
Main Author: | |
---|---|
Format: | Thesis |
Language: | English |
Published: |
2017
|
Subjects: | |
Online Access: | http://eprints.hud.ac.uk/id/eprint/34340/ https://eprints.hud.ac.uk/id/eprint/34340/1/FINAL%20THESIS%20-%20Towsyfyan.pdf |
Summary: | Mechanical seals have increasingly been used for sealing rotating shafts in centrifugal pumps, propeller shafts in ships and submarines, compressors, liquid propellant rocket motors in aerospace industry, pumps, turbines, mixers and many other rotating machines during last two decades. Abnormal operating conditions in the mechanical seals will degrade machine performance, increase operating cost and may cause unexpected sudden failures which are dangerous in both engineering and safety terms. Hence it is necessary to investigate the tribological behaviour of mechanical seals operating based on nonlinear coupling between fluid and surface dynamics, in order to develop more advanced diagnostic technologies to improve the reliability of such machines operating with mechanical seals. Different condition monitoring techniques have been studied to evaluate the lubrication state and severity of contact between the mating faces in mechanical seals. However, some of them are not cost effective others are not practical in industrial applications. Acoustic emission (AE) has been proved to be a sensitive indicator of lubrication conditions and changes in the lubricant properties, however the application of technique for identification of lubrication regimes in mechanical seals has not been reported yet. Moreover, previous studies give relatively little information to acoustic emission condition monitoring of mechanical seals, nor has comprehensive fault detection been implemented for a particular case. In addition, a review on previous works reveals the lack of comprehensive mathematical models to explain the relationship between AE energy and tribological characteristics of the mating faces under healthy and faulty conditions. In this research, the tribological behaviour of mechanical seals is investigated using acoustic emission measurements to pave a way for fault detection at early stage. Three common seal failures i.e. dry running, spring fault, and defective seal are studied in this thesis. The main objective is to ... |
---|