Marine biofouling organisms respond to multiple stressors in a changing climate

The marine environment is likely to experience profound climate change in the coming 100 years and beyond. Ocean acidification (OA) is one of the climate change issues attracting the attention of researchers all over the world. The decreasing pH of the oceans might threaten marine biofouling organis...

Full description

Bibliographic Details
Main Authors: Hou, Huiyi, 侯慧仪
Format: Doctoral or Postdoctoral Thesis
Language:English
Published: The University of Hong Kong (Pokfulam, Hong Kong) 2013
Subjects:
Online Access:https://doi.org/10.5353/th_b5099075
http://hdl.handle.net/10722/194551
Description
Summary:The marine environment is likely to experience profound climate change in the coming 100 years and beyond. Ocean acidification (OA) is one of the climate change issues attracting the attention of researchers all over the world. The decreasing pH of the oceans might threaten marine biofouling organisms. However, climate change is not only involved with ocean acidification (OA) but the change of other environmental variables, such as temperature and salinity. These environmental factors act as multiple stressors and synergistically affect shell-forming biofoulers, in which, the calcium carbonate skeleton structure plays an important role of protection. Previous studies regarding the response of marine biofoulers to the environmental stressors were generally summarized in this article. Then a calcifying biofouling tube worm, Hydroides elegans, were reared from larval stage to early juvenile stage under control and treatment conditions to examine the combined effects of temperature (24, 30°C), pH (8.1, 7.7) and salinity (34, 27ppt). Juvenile growth and chemical composition (Mg/Ca and Sr/Ca) of their calcareous tubes were tested and used as assessment of effects of the three environmental stressors. The experiment revealed that H. elegans was robust to the environmental change because juvenile development positively responded to temperature and the interaction between temperature and salinity. Other combinations did not exert significant effect. The results suggest the need of further study of proteomics and transcriptomics to reveal the mechanisms of calcification as well as long-term studies to examine the energy costs of adaptation. In addition, the non-significant chemical composition (Mg/Ca and Sr/Ca) of the tube of this organism suggest a need of further exploration of the same animal but not only focus on three factors but the seawater chemical composition as well. published_or_final_version Environmental Management Master Master of Science in Environmental Management