Making post-glacial uplift visible: A model based high-resolution animation of shore displacement

Glacial isostatic adjustment (GIA) is an ongoing phenomenon that characterizes the landscape of the High Coast (63°04'N, 18°22'E, Sweden) / Kvarken archipelago (63°16'N, 21°10'E, Finland) UNESCO World Heritage site. GIA occurs as the Earth’s crust that was depressed by the contin...

Full description

Bibliographic Details
Main Authors: Perheentupa, Viljami, Mäkinen, Ville, Oksanen, Juha
Other Authors: National Land Survey of Finland, Maanmittauslaitos
Format: Article in Journal/Newspaper
Language:English
Published: Copernicus Publications 2019
Subjects:
Online Access:http://hdl.handle.net/10138/306019
Description
Summary:Glacial isostatic adjustment (GIA) is an ongoing phenomenon that characterizes the landscape of the High Coast (63°04'N, 18°22'E, Sweden) / Kvarken archipelago (63°16'N, 21°10'E, Finland) UNESCO World Heritage site. GIA occurs as the Earth’s crust that was depressed by the continental ice sheet during the last glacial period is slowly rebounding towards isostatic equilibrium. The maximum rate of land uplift in the area is more than eight millimetres per year, which – along with the very different topographical reliefs of the opposite coasts – makes the region an excellent study area for land uplift as a phenomenon. As there is a marine area between the coasts, shore displacement is an essential part of the phenomenon in the study area. The cartographic representation of GIA and shore displacement has classically relied on static maps representing isobases of the uplift rates and of ancient shorelines. However, to dynamically visualize and communicate the continuity and the nature of the phenomena, an animated map is required. To create a visually balanced, seamless animation, we need to create high-resolution image frames that represent digital elevation models (DEMs) together with extracted shorelines of different moments of time. To create these frames, we developed a mathematical model to transform the DEM in a given time for the past ~9300 years. We used the most recent LiDAR-derived DEMs of Finland and Sweden, and a bathymetric model of the Gulf of Bothnia as our initial data, along with a land uplift rate surface derived from geophysical measurements. We compared the current uplift rates with the shoreline observations of the ancient Baltic Sea stages, Litorina Sea and Ancylus Lake, and created a linear model between the elevations of the shorelines and the present-day uplift rates, as there was a near-linear correlation in both cases. Based on the current uplift rates and the elevations and the dating of the ancient shorelines, we derived an exponential model to describe the non-linear correlation between ...