Development of under-ice stratification in Himmerfjärden bay, North-Western Baltic proper, and their effect on the phytoplankton spring bloom

Seasonal sea ice cover reduces wind-driven mixing and allows for under-ice stratification to develop. These under-ice plumes are a common phenomenon in the seasonal sea ice zone. They stabilize stratification and concentrate terrestrial runoff in the top layer, transporting it further offshore than...

Full description

Bibliographic Details
Published in:Journal of Marine Systems
Main Authors: Kari, Elina, Merkouriadi, Ioanna, Walve, Jakob, Leppäranta, Matti, Kratzer, Susanne
Other Authors: Institute for Atmospheric and Earth System Research (INAR)
Format: Article in Journal/Newspaper
Language:English
Published: Elsevier Scientific Publ. Co 2018
Subjects:
Online Access:http://hdl.handle.net/10138/240217
Description
Summary:Seasonal sea ice cover reduces wind-driven mixing and allows for under-ice stratification to develop. These under-ice plumes are a common phenomenon in the seasonal sea ice zone. They stabilize stratification and concentrate terrestrial runoff in the top layer, transporting it further offshore than during ice-free seasons. In this study, the effect of sea ice on spring stratification is investigated in Himmerfjärden bay in the NW Baltic Sea. Distinct under-ice plumes were detected during long ice seasons. The preconditions for the development of the under-ice plumes are described as well as the typical spatial and temporal dimensions of the resulting stratification patterns. Furthermore, the effect of the under-ice plume on the timing of the onset and the maximum of the phytoplankton spring bloom were investigated, in terms of chlorophyll-a (Chl-a) concentrations. At the head of the bay, bloom onset was delayed on average by 18 days in the event of an under-ice plume. However, neither the maximum concentration of Chl-a nor the timing of the Chl-a maximum were affected, implying that the growth period was shorter with a higher daily productivity. During this period from spring bloom onset to maximum Chl-a, the diatom biomass was higher and Mesodinium rubrum biomass was lower in years with under-ice plumes compared to years without under-ice plumes. Our results thus suggest that the projected shorter ice seasons in the future will reduce the probability of under-ice plume development, creating more dynamic spring bloom conditions. These dynamic conditions and the earlier onset of the spring bloom seem to favor the M. rubrum rather than diatoms. Peer reviewed