Air-sea exchange of carbon dioxide at the island of Utö in the Baltic Sea

Carbon dioxide is a key compound both in climate change and marine biological productivity. In the oceans, the sea-air exchange of carbon dioxide is driven by large-scale currents and changes in solubility, whereas in coastal seas, such as the Baltic Sea, biological activity has a significant effect...

Full description

Bibliographic Details
Main Author: Honkanen, Martti
Other Authors: Helsingin yliopisto, Matemaattis-luonnontieteellinen tiedekunta, Fysiikan laitos, University of Helsinki, Faculty of Science, Department of Physics, Helsingfors universitet, Matematisk-naturvetenskapliga fakulteten, Institutionen för fysik
Format: Master Thesis
Language:English
Published: Helsingfors universitet 2017
Subjects:
Online Access:http://hdl.handle.net/10138/229079
Description
Summary:Carbon dioxide is a key compound both in climate change and marine biological productivity. In the oceans, the sea-air exchange of carbon dioxide is driven by large-scale currents and changes in solubility, whereas in coastal seas, such as the Baltic Sea, biological activity has a significant effect on the aquatic carbonate system. However, direct measurements of the sea-air exchange of carbon dioxide are difficult to carry out due to the small magnitude of the fluxes, waves, sea ice and sea spray that influence sensitive instruments. Eddy covariance method is a widely used direct method for measuring the fluxes of carbon dioxide. The sea-air fluxes of carbon dioxide are also commonly calculated using a parametrization based on wind speed. Finnish Marine Institute in collaboration with Finnish Environment Institute began to construct a new atmospheric and marine research station on Utö in the Archipelago Sea in 2012. The objective of this study is to determine the suitability of the new station to measure air-sea exchange of carbon dioxide and aquatic carbonate system. The air-sea fluxes of carbon dioxide were measured with three infrared gas analyzer set-ups during October-December 2016, and the fluxes were also calculated using a parametrization of gas transfer velocity. The aquatic carbonate system of the surface water during July-October 2016 was studied using dissolved carbon dioxide concentration and pH of the seawater measured in a flow-through pumping system. The dissolved carbon dioxide concentration was measured by using an equilibration chamber together with an infrared gas analyzer. The micrometeorological tower erected on the shore can be applied for measuring the sea-air fluxes of carbon dioxide in an open sea wind sector, which was determined based on the roughness length. The closed-path infrared gas analyzer (Licor LI-7000) works well in the hard coastal conditions, whereas an open-path analyzer (Licor LI-7500) had difficulties in measuring fluxes during showers and high relative humidity. The ...