Short- and long-term consequences of food resources on Ural owl Strix uralensis reproduction

Life-history theory states that although natural selection would favour a maximisation of both reproductive output and life-span, such a combination can not be achieved in any living organism. According to life-history theory the reason for the fact that not all traits can be maximised simultaneousl...

Full description

Bibliographic Details
Main Author: Karell, Patrik
Other Authors: Gustafsson, Lars, University of Helsinki, Faculty of Biosciences, Department of Biological and Environmental Sciences, Helsingin yliopisto, biotieteellinen tiedekunta, bio- ja ympäristötieteiden laitos, Helsingfors universitet, biovetenskapliga fakulteten, institutionen för bio- och miljövetenskaper, Brommer, Jon, Pietiäinen, Hannu
Format: Doctoral or Postdoctoral Thesis
Language:English
Published: Helsingin yliopisto 2010
Subjects:
Online Access:http://hdl.handle.net/10138/22147
Description
Summary:Life-history theory states that although natural selection would favour a maximisation of both reproductive output and life-span, such a combination can not be achieved in any living organism. According to life-history theory the reason for the fact that not all traits can be maximised simultaneously is that different traits compete with each other for resources. These relationships between traits that constrain the simultaneous evolution of two or more traits are called trade-offs. Therefore, during different life-stages an individual needs to optimise its allocation of resources to life-history components such as growth, reproduction and survival. Resource limitation acts on these traits and therefore investment in one trait, e.g. reproduction, reduces the resources available for investment in another trait, e.g. residual reproduction or survival. In this thesis I study how food resources during different stages of the breeding event affect reproductive decisions in the Ural owl (Strix uralensis) and the consequences of these decisions on parents and offspring. The Ural owl is a suitable study species for such studies in natural populations since they are long-lived, site-tenacious, and feed on voles. The vole populations in Fennoscandia fluctuate in three- to four-year cycles, which create a variable food environment for the Ural owls to cope with. The thesis gives new insight in reproductive costs and their consequences in natural animal populations with emphasis on underlying physiological mechanisms. I found that supplementary fed Ural owl parents invest supplemented food resources during breeding in own self-maintenance instead of allocating those resources to offspring growth. This investment in own maintenance instead of improving current reproduction had carry-over effects to the following year in terms of increased reproductive output. Therefore, I found evidence that reduced reproductive costs improves future reproductive performance. Furthermore, I found evidence for the underlying mechanism behind ...