Seaweed Invasions and Novel Chemical Defences

Biological invasions pose a risk to the biodiversity and the functioning of ecosystems in invaded areas. The reasons why some introduced species become dominant and widespread in their new environments is still largely an unsettled question. It has commonly been predicted that introduced plants will...

Full description

Bibliographic Details
Main Author: Enge, Swantje
Format: Doctoral or Postdoctoral Thesis
Language:English
Published: 2012
Subjects:
Online Access:http://hdl.handle.net/2077/30534
Description
Summary:Biological invasions pose a risk to the biodiversity and the functioning of ecosystems in invaded areas. The reasons why some introduced species become dominant and widespread in their new environments is still largely an unsettled question. It has commonly been predicted that introduced plants will invade when they are less affected by herbivores, since this will provide the introduced species with a competitive advantage over native plants. Furthermore, it has been suggested that introduced species with chemical defences that are novel to native herbivores in the new range are most likely to become successful invaders. The scope of this thesis was to investigate ecological processes that underlie the successful invasion of plant/seaweed species and how chemical compounds mediate these processes, using the filamentous red alga Bonnemaisonia hamifera as a model organism. Having its origin in the Northwest Pacific, this alga has invaded large parts of the North Atlantic rocky shores and became dominant in many seaweed communities. Feeding preference experiments showed that native generalist herbivores explicitly preferred native seaweeds to the invader (paper I). Using a bioassay-guided fractionation, B. hamifera was found to be chemically defended against native herbivores by producing 1,1,3,3-tetrabromo-2-heptanone as the main feeding deterrent compound (paper I). The production of this compound was demonstrated to be costly, but also to increase the fitness of the invader by reducing the impact of pathogenic bacteria (paper IV) in addition to the shown reduced herbivory. Resource allocation to a chemical defence may also explain the relatively poor performance (in terms of growth) of B. hamifera in direct interactions with native seaweeds when herbivores were absent in experimental algal communities (paper II, III). In the presence of herbivores, however, the abundance of B. hamifera increased in the community as a result of both consumption of neighbouring algal competitors and an enhanced performance of the ...