Gene expression and regeneration in ophiuroids: A study of transcriptional activity and regeneration in the temperate Amphiura filiformis and Antarctic Ophionotus victoriae

Regeneration, in which lost or damaged tissues are re-grown, is a common phenomenon amongst animals and especially so within the ophiuroids (brittle stars) of the phylum echinodermata. The process of regeneration begins with the injury event followed by a period of cell and tissue reorganization whi...

Full description

Bibliographic Details
Main Author: Burns, Gavin
Format: Doctoral or Postdoctoral Thesis
Language:English
Published: 2012
Subjects:
Online Access:http://hdl.handle.net/2077/30431
Description
Summary:Regeneration, in which lost or damaged tissues are re-grown, is a common phenomenon amongst animals and especially so within the ophiuroids (brittle stars) of the phylum echinodermata. The process of regeneration begins with the injury event followed by a period of cell and tissue reorganization which results in wound healing and tissue re-growth. The genetic programme of regeneration is complex and poorly understood, however the role of gene expression is becoming increasingly well characterised. The goal of this thesis was to identify genes that are transcribed during the process of regeneration in ophiuroids to determine the pathways and gene families active during the various stages of regeneration. By developing and adapting high throughput genomic techniques for use with ophiuroids the investigation of ophiuroid regeneration was taken from the single gene to whole transcriptome studies. This effort was carried out in two diverse ophiuroid species; the Antarctic Ophionotus victoriae and temperate Amphiura filiformis. Initially the levels of natural arm damage and rate of regeneration was investigated in O. victoriae. Subsequently, the genomic techniques required to explore the transcriptomes of these organisms were developed or adapted. Using these techniques the scale of gene expression and gene networks active during regeneration in both O. victoriae and A. filiformis were surveyed. Determining the extent of gene expression and identifying gene involvement in regeneration in two diverse ophiuroid species facilitates a deeper understanding of the conservation of this important survival and potentially clinically important mechanism. Investigation of natural arm damage and the rate of regeneration in O. victoriae demonstrated that this stenothermic Antarctic ophiuroid has a slow rate of regeneration. This is preceded by an unexpected and unprecedented delay (approximately 5 months) followed by a long period of regeneration (>1 year) at a reduced rate that is expected for an organism living at low ...