Studies of the Arctic Ocean sea ice cover and hydrothermal heat fluxes

Since reliable ice extent estimates from satellite data became available in 1979 the Arctic sea ice cover has followed a declining long term trend. Over the last decade the decline has accelerated with record low sea ice extents recorded in 2002, 2005, 2007 and 2012. In order to explain the mechanis...

Full description

Bibliographic Details
Main Author: Stranne, Christian
Format: Doctoral or Postdoctoral Thesis
Language:English
Published: 2012
Subjects:
Online Access:http://hdl.handle.net/2077/30270
Description
Summary:Since reliable ice extent estimates from satellite data became available in 1979 the Arctic sea ice cover has followed a declining long term trend. Over the last decade the decline has accelerated with record low sea ice extents recorded in 2002, 2005, 2007 and 2012. In order to explain the mechanisms behind the observed ice cover decline it is critical to gain a better understanding of the climate system as a whole which in turn requires detailed studies of the involved processes. The main objective of the work presented in this thesis is to improve the knowledge of the Arctic ice cover sensitivity to climate change through detailed studies of some key processes involved. The observed sea ice cover reduction has not been homogeneous over the Arctic Ocean. A typical pattern is that the thinning has been larger in regions with thick ice compared to regions with thinner ice. It has been argued that the ice thickness - ice growth rate feedback mechanism is the dominating process explaining these regional variations. The sea ice thickness response to variations in the atmospheric forcing is studied with a succession of increased model complexity. When the model realism is increased by the inclusion of processes such as ice divergence and variable surface albedo, the ice cover response properties become more complex with e.g. a very high sensitivity close to the transition between perennial and seasonal ice. These results imply that other mechanisms than the ice thickness - ice growth rate feedback might be more important for explaining the observed regional variations of the sea ice cover decline. It is suggested that temporal variations in the local ice divergence is one such mechanism and supporting observational data are presented. Simulations of the present Arctic sea ice cover performed with coupled 3D models (both global and regional) show large inter-model scatter. Analyses of the mechanism behind this scatter point at differences in the surface albedo parameterization as one of the major factors. In the ...