Control of bioluminescence. Operating the light switch in photophores from marine animals

Physiologically controlled photocytes, capable of producing bioluminescence, are a common feature in the ocean among animals ranging from cnidarians to fish. The aim of this thesis was to study and compare the nature of this control, in both distantly and closely related species from the groups Tele...

Full description

Bibliographic Details
Main Author: Krönström, Jenny
Format: Doctoral or Postdoctoral Thesis
Language:English
Published: 2009
Subjects:
Online Access:http://hdl.handle.net/2077/19172
Description
Summary:Physiologically controlled photocytes, capable of producing bioluminescence, are a common feature in the ocean among animals ranging from cnidarians to fish. The aim of this thesis was to study and compare the nature of this control, in both distantly and closely related species from the groups Teleostei Crustacea, and Cnidaria. This was done using histochemistry and electron microscopy to reveal the internal morphology of the different photophores and to identify the location of nerves and signalling substances inside these organs. Moreover, luminescence responses of isolated photocytes, photophores or live animals, exposed to drugs with effects on adrenergic, noradrenergic, 5-hydroxytryptaminergic and nitric oxide signalling mechanisms, were measured. Nitric oxide donors had modulating, primarily quenching, effects on the luminescence from the fish species Argyropelecus hemigymnus and Porichthys notatus and the krill Meganyctiphanes norvegica. However, a few of the A. hemigymnus photophores, and a part of the P. notatus response were potentiated when using nitric oxide donors. The variety in nitric oxide responses was reflected by the presence of nitric oxide synthase-like material in different cell types, including neurons, photocytes and lens/filter cells, in the photophores from the studied fish species and Meganyctiphanes norvegica. Capillary sphincter cells and capillary endothelia contained nitric oxide synthase-like material in Meganyctiophanes norvegica photophores. Moreover, varicose nerve fibres, containing 5-hydroxytryptamine, followed the capillaries and reached the sphincter cells, suggesting that nitric oxide and 5-hydroxytryptamine may interact and control the resistance for haemolymph flow in the photophores, but other mechanisms are also discussed in the thesis. Contractile properties of the sphincter structures, and possibly the endothelial cells, were supported by the presence of muscle-like filaments in the sphincter structures and filamentous actin in both sphincter and endothelial cells. ...