Preservation and detection of molecular signs of life under Mars analogue conditions

The search for life on Mars continues apace, however the significant cost in time and resources involved in each robotic mission, whether orbiter, lander, or even rover, necessitates the use of terrestrial Martian analogue sites. Few regions on Earth are able to accurately simulate the conditions on...

Full description

Bibliographic Details
Main Author: Thomas, Nick Rhys
Format: Thesis
Language:unknown
Published: 2018
Subjects:
Online Access:http://theses.gla.ac.uk/30741/
https://eleanor.lib.gla.ac.uk/record=b3325849
Description
Summary:The search for life on Mars continues apace, however the significant cost in time and resources involved in each robotic mission, whether orbiter, lander, or even rover, necessitates the use of terrestrial Martian analogue sites. Few regions on Earth are able to accurately simulate the conditions on Mars, yet locations such as the Atacama Desert of northern Chile and McMurdo Dry Valleys of Antarctica offer invaluable opportunities to test experiments and equipment prior to missions, as well as to advance understanding of the survival of life at the limits of habitability. This study presents an exciting new analogue region in the Chilean Altiplano, offering a unique balance of Mars-like conditions not experienced in other terrestrial Mars analogues. Utilising this novel Martian analogue, the present study examines how signs of ancient life may be preserved in the soils and sediments of Mars, investigating the extent of protection afforded by soil coverage against the inhospitable conditions of the surface. In addition, this study presents a new approach to understanding the bacterial community which does survive in such a hostile environment on Earth, illustrating the effect of soil coverage on the survival of bacteria in a Mars-like environment. The rapidly-changing nature of hostile soil conditions with increasing soil depth was found have stark implications for the likelihood of success of upcoming missions such as the ESA 2020 ExoMars Rover, as well as advancing the understanding of life in extreme – and under reported – environments on Earth.