Is quartz a potential indicator of ultrahigh-pressure metamorphism? : laser Raman spectroscopy of quartz inclusions in ultrahigh-pressure garnets

Laser Raman microspectroscopy was applied to quartz inclusions in coesite- and diamond-grade metapelites from the Kokchetav ultrahigh-pressure metamorphic (UHPM) complex, Northern Kazakhstan, and diamond-grade eclogite xenoliths from the Mir kimberlite pipe, Yakutiya, Russia to assess the quantitati...

Full description

Bibliographic Details
Published in:European Journal of Mineralogy
Main Authors: Korsakov, Andrey V., Perraki, Maria, Zhukov, Vladimir P., De Gussem, Kris, Vandenabeele, Peter, Tomilenko, Anatoly A.
Format: Article in Journal/Newspaper
Language:English
Published: 2009
Subjects:
Online Access:https://biblio.ugent.be/publication/890412
http://hdl.handle.net/1854/LU-890412
https://doi.org/10.1127/0935-1221/2009/0021-2006
https://biblio.ugent.be/publication/890412/file/6826953
Description
Summary:Laser Raman microspectroscopy was applied to quartz inclusions in coesite- and diamond-grade metapelites from the Kokchetav ultrahigh-pressure metamorphic (UHPM) complex, Northern Kazakhstan, and diamond-grade eclogite xenoliths from the Mir kimberlite pipe, Yakutiya, Russia to assess the quantitative correlation between the Raman frequency shift and metamorphic pressure. Quartz crystals sealed in garnets have a higher frequency shift than those in the matrix. Residual pressures retained by quartz inclusions depend on the metamorphic history of the garnet host. The Raman frequency saift of quartz inclusions in garnet from coesite-grade and diamond-grade metamorphic rocks shows no systematic change with increasing peak metamorphic pressures. The highest shifts of the main Raman bands of quartz were documented for monocrystalline quartz inclusions in garnets from a diamond-grade eclogite xenolith. Calibrations based on experimental work suggest that the measured Raman frequency shifts signify residual pressures of 0.1-0.6 GPa for quartz. inclusions from coesite-grade metapelites from Kokchetav, 0.1-0.3 GPa for quartz inclusions from diamond-grade metapelites from Kokchetav, and 1.0-1.2 GPa for quartz inclusions from the diamond-grade eclogite xenoliths from the Mir kimberlite pipe. Normal stresses and internal (residual) pressures of quartz inclusions in garnet were numerically simulated with a 3-shell elastic model. Estimated values of residual pressures are inconsistent with the residual pressures estimated from the frequency shifts. Residual pressure slightly depends on P-T conditions at peak metamorphic stage. Laser Raman microspectroscopic analysis of quartz is a potentially powerful method for recovering an ultrahigh pressure metamorphic event. Monocrystalline quartz inclusions yielding a residual pressure greater than 2.5 GPa might indicate the presence of a former coesite.