Statistical analysis of the polar electrojet influence on geomagnetic transfer functions estimates over wide time and space scales.

Magnetotelluric (MT) and magnetovariational (MV) investigations can provide original information and constraints on the electrical conductivity, thermal state and structure of the crust and mantle at the base of the polar ice sheets. These methods provide depth resolution, lacking in potential field...

Full description

Bibliographic Details
Main Authors: RIZZELLO, DANIELE, ARMADILLO, EGIDIO, Adele Manzella
Other Authors: Rizzello, Daniele, Armadillo, Egidio, Adele, Manzella
Format: Conference Object
Language:English
Published: 2013
Subjects:
Online Access:http://hdl.handle.net/11567/596143
Description
Summary:Magnetotelluric (MT) and magnetovariational (MV) investigations can provide original information and constraints on the electrical conductivity, thermal state and structure of the crust and mantle at the base of the polar ice sheets. These methods provide depth resolution, lacking in potential field methods, and can reach high investigation depth, an invaluable advantage where very difficult logistic conditions prevent or limit the use of active methods such as seismic surveys. However, MT/MV surveys have not been applied extensively in polar areas mainly because electromagnetic data could be biased by the polar electrojet current systems (PEJ) occurring at high geomagnetic latitude. In fact, close to the auroral oval, the electromagnetic fields at ground may violate the uniform plane wave assumption at the base of standard MT/MV data processing, resulting in possible erroneous interpretations of the Earth’s deep conductivity structure. It has been shown that a careful selection of events to be analyzed may decrease bias, and different robust techniques have been developed and applied. Even if the source currents flow in complex 3D systems that change from event to event in an unpredictable way, some general rules have been observed. Violations of uniform plane wave source assumption are enhanced during higher geomagnetic activity induced by high solar activity, because PEJ equivalent geometry becomes more complicated, affecting also EM field at lower latitudes. Differences in the degree of source distortions have also been reported between day/night and seasonal observations. The ISEE (Ice Sheet Electromagnetic Experiment) project, founded by the Italian National Antarctic Research Programme, aims to better understand the effects of non-uniform source fields on MT/MV data processing in polar areas, to quantify and possibly overcome the source effects and get more reliable impedance and magnetic transfer function (TF) estimates. Here we introduce the first step of the project, that is a statistical analysis of ...